Testing Assignments to Constraint Satisfaction Problems [article]

Hubie Chen, Matt Valeriote, Yuichi Yoshida
2016 arXiv   pre-print
For a finite relational structure A, let CSP(A) denote the CSP instances whose constraint relations are taken from A. The resulting family of problems CSP(A) has been considered heavily in a variety of computational contexts. In this article, we consider this family from the perspective of property testing: given an instance of a CSP and query access to an assignment, one wants to decide whether the assignment satisfies the instance, or is far from so doing. While previous works on this
more » ... studied concrete templates or restricted classes of structures, this article presents comprehensive classification theorems. Our first contribution is a dichotomy theorem completely characterizing the structures A such that CSP(A) is constant-query testable: (i) If A has a majority polymorphism and a Maltsev polymorphism, then CSP(A) is constant-query testable with one-sided error. (ii) Else, testing CSP(A) requires a super-constant number of queries. Let ∃CSP(A) denote the extension of CSP(A) to instances which may include existentially quantified variables. Our second contribution is to classify all structures A in terms of the number of queries needed to test assignments to instances of ∃CSP(A), with one-sided error. More specifically, we show the following trichotomy: (i) If A has a majority polymorphism and a Maltsev polymorphism, then ∃CSP(A) is constant-query testable with one-sided error. (ii) Else, if A has a (k + 1)-ary near-unanimity polymorphism for some k ≥ 2, and no Maltsev polymorphism then ∃CSP(A) is not constant-query testable (even with two-sided error) but is sublinear-query testable with one-sided error. (iii) Else, testing ∃CSP(A) with one-sided error requires a linear number of queries.
arXiv:1608.03017v1 fatcat:znn7lunimnajvgmr4arfqvi3g4