A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
Sinkhorn Distributionally Robust Optimization
[article]
2021
arXiv
pre-print
We study distributionally robust optimization with Sinkorn distance -- a variant of Wasserstein distance based on entropic regularization. We derive convex programming dual reformulations when the nominal distribution is an empirical distribution and a general distribution, respectively. Compared with Wasserstein DRO, it is computationally tractable for a larger class of loss functions, and its worst-case distribution is more reasonable. To solve the dual reformulation, we propose an efficient
arXiv:2109.11926v1
fatcat:lcwrltfisjbyznk3743vxhcsme