M. Menenti, X. Li, J. Wang, H. Vereecken, J. Li, M. Mancini, Q. Liu, L. Jia, J. Li, C. Kuenzer, S. Huang, H. Yesou (+10 others)
2015 The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences  
Ten Dragon 3 projects deal with hydrologic and cryosphere processes, with a focus on the Himalayas and Qinghai – Tibet Plateau, but not limited to that. At the 1st Dragon 3 Progress Symposium in 2013 a significant potential for a better and deeper integration appeared very clearly and we worked out an overview of the ten projects identifying specific issues and objectives shared by at least two projects. At the Mid Term Symposium in 2014 a joint session was held over two days. As regards
more » ... eric processes science highlights covered: Glacier flow velocity by optical and SAR features tracking and InSAR; Patterns in space and time of glacier flow velocity; Mass change estimated with DTM-s and altimetry; Reflectance and LST used to classify glacier surface and understand surface processes, Inventory and changes in the number and area of lakes in the Qinghai – Tibet Plateau 1970, 1990, 2000 and 2010; Deformation of permafrost along the Qinghai – Tibet railway. <br><br> Highlights on hydrologic processes included: Global comparison of SMOS, ASCAT and ERA soil moisture data products; Relative deviations evaluated by climate zone; Soil moisture data products improved with ancillary data; Assimilation of FY - , TRMM and GPM precipitation data products in WRF; Improved algorithm and data products on fractional snow cover; Improvement of MODIS ET with assimilation of LST; TRMM data products evaluated in the Yangtze; Calibration of river basin models using LST; System to calibrate, correct and normalize (spatial, spectral) data collected by imaging spectral radiometers; Integration of data acquired by different sensors, e.g. ET Monitor with optical and microwave (SMOS, FY – 3) data; Hydrological data products used both for forcing and evaluation of Qinghai – Tibet Plateau hydrological model; Wetlands vulnerability assessed through changes in land cover 1987 – 2013; Multi incidence angle and multi – temporal SAR to monitor water extent. In the general session a proposal for a Dragon Water Cycle Initiative was presented.
doi:10.5194/isprsarchives-xl-7-w3-1101-2015 fatcat:cazpqqpivjcmjhgzth4tx44rki