Substrate potential of Eemian to Holocene permafrost organic matter for future microbial greenhouse gas production

Janina G. Stapel, Georg Schwamborn, Lutz Schirrmeister, Brian Horsfield, Kai Mangelsdorf
2017 Biogeosciences Discussions  
Multiple permafrost cores from Bol'shoy Lyakhovsky Island in NE Siberia comprising deposits from Eemian to modern time are investigated to evaluate the stored potential of the freeze-locked organic matter (OM) to serve as substrate for the production of microbial greenhouse gases from thawing permafrost deposits. Deposits from Late Pleistocene glacial periods (comprising MIS 3 and MIS 4) possess an increased aliphatic character and a higher amount of potential substrates, and therefore higher
more » ... therefore higher OM quality in terms of biodegradation compared to interglacial deposits from the Eemian (MIS 5e) as well as from the Holocene (MIS 1). To assess the potential of the individual permafrost deposits to provide substrates for microbially induced greenhouse gas generation, concentrations of free and bound acetate as an excellent substrate for methanogenesis are used. The highest free (in pore water and segregated ice) and bound (bound to the organic matrix) acetate-substrate pools of the permafrost deposits are observed within the interstadial MIS 3 and stadial MIS 4 period deposits. In contrast, deposits from the last interglacial MIS 5e show only poor substrate pools. The Holocene deposits reveal a significant bound-acetate pool, representing at least a future substrate potential upon release during OM degradation. Biomarkers for past microbial communities (branched and isoprenoid GDGTs) show also highest abundance of past microbial communities during the MIS 3 and MIS 4 deposits, which indicates higher OM quality with respect to microbial degradation during time of deposition. On a broader perspective, Arctic warming will increase permafrost thaw and favour substrate availability from freeze-locked older permafrost deposits. Therefore, especially those deposits from MIS 3 and MIS 4 show a high potential for providing substrates relevant for methanogenesis.
doi:10.5194/bg-2017-89 fatcat:ru57zoabcjagxk73ml6f5dpnqy