Deep Ego-Motion Classifiers for Compound Eye Cameras

Hwiyeon Yoo, Geonho Cha, Songhwai Oh
2019 Sensors  
Compound eyes, also known as insect eyes, have a unique structure. They have a hemispheric surface, and a lot of single eyes are deployed regularly on the surface. Thanks to this unique form, using the compound images has several advantages, such as a large field of view (FOV) with low aberrations. We can exploit these benefits in high-level vision applications, such as object recognition, or semantic segmentation for a moving robot, by emulating the compound images that describe the captured
more » ... enes from compound eye cameras. In this paper, to the best of our knowledge, we propose the first convolutional neural network (CNN)-based ego-motion classification algorithm designed for the compound eye structure. To achieve this, we introduce a voting-based approach that fully utilizes one of the unique features of compound images, specifically, the compound images consist of a lot of single eye images. The proposed method classifies a number of local motions by CNN, and these local classifications which represent the motions of each single eye image, are aggregated to the final classification by a voting procedure. For the experiments, we collected a new dataset for compound eye camera ego-motion classification which contains scenes of the inside and outside of a certain building. The samples of the proposed dataset consist of two consequent emulated compound images and the corresponding ego-motion class. The experimental results show that the proposed method has achieved the classification accuracy of 85.0%, which is superior compared to the baselines on the proposed dataset. Also, the proposed model is light-weight compared to the conventional CNN-based image recognition algorithms such as AlexNet, ResNet50, and MobileNetV2.
doi:10.3390/s19235275 pmid:31795509 pmcid:PMC6928859 fatcat:4dhprvte3fawdfuqprax3rieb4