Cross-Domain Few-Shot Graph Classification [article]

Kaveh Hassani
2022
We study the problem of few-shot graph classification across domains with nonequivalent feature spaces by introducing three new cross-domain benchmarks constructed from publicly available datasets. We also propose an attention-based graph encoder that uses three congruent views of graphs, one contextual and two topological views, to learn representations of task-specific information for fast adaptation, and task-agnostic information for knowledge transfer. We run exhaustive experiments to
more » ... te the performance of contrastive and meta-learning strategies. We show that when coupled with metric-based meta-learning frameworks, the proposed encoder achieves the best average meta-test classification accuracy across all benchmarks. The source code and data will be released here: https://github.com/kavehhassani/metagrl
doi:10.48550/arxiv.2201.08265 fatcat:5mbth3uxznfuhigpohh7a3hlqu