Values of the Riemann zeta function at odd points and multiple numerical series

Карахан Мирзоев, Татьяна Сафонова
2021 International scientific conference "Ufa autumn mathematical school - 2021"   unpublished
ðàáîòå ìåòîäàìè ñïåêòðàëüíîé òåîðèè îïåðàòîðîâ ØòóðìàEËèóèâëëÿ íàéäåíû íîâûå ïðåäñòàâëåíèÿ çíà÷åíèé äçåòàEôóíêöèè Ðèìàíà â íå÷¼òíûõ òî÷êàõ â âèäå êðàòíûõ ÷èñëîâûõ ðÿäîâF Êëþ÷åâûå ñëîâàX äçåòàEôóíêöèÿ ÐèìàíàD êðàòíûå ÷èñëîâûå ðÿäûF Values of the Riemann zeta function at odd points and multiple numerical series In this work, new representations of the values of the Riemann zeta function at odd points in the form of multiple numerical series are found using the methods of the spectral theory of Sturm-Liuvell operators.
doi:10.33184/mnkuomsh1t-2021-10-06.22 fatcat:njtsnsgtgjg23dsdcnkhhudgbi