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Preface

This manual is devoted to an active research topic in modern statistics—
fitting geometric contours (lines and circles) to observed data, in particular to
digitized images. In such applications both coordinates of the observed points
are measured imprecisely, i.e. both variables (x and y) are subject to random
errors. Statisticians call this topic Errors-In-Variables (EIV) model. It is radically
different, and much more complex, than the classical regression where only one
variable (usually, y) is random.

Fitting straight lines to observed data with errors in both variables is an

old problem dating back to the 1870s [1, 2, 117] , with applications in general

statistics, sciences, econometrics, and image processing. Its studies have a colorful
history (which we overview in Chapter 1) through the XX century, and its most
active period perhaps lasted from 1975 to 1995. By the late 1990’s all the major
issues in the linear EIV problem appeared to be resolved, and now this topic is
no longer an active research area.

For a detailed and compete account of the linear EIV regression studies, see

surveys [8, 73, 126, 127, 132, 187] and books [40] , [66] , as well as Chap-

ter 10 in [128] and Chapter 29 in [111] . We note that the linear EIV problem,

despite its illusive simplicity, is deep and vast; entire books, such as [66] and

[40] , are devoted to this subject. We only overview it as much as it is related

to our main theme – fitting circles and other curves.
Fitting nonlinear models to data with errors in both variables has been stud-

ied by statisticians since about 1930s [50, 55] . This topic can be divided into

two large parts. In one(which is not covered by this manual), the main goal is to
describe observed data by a nonlinear function y = g(x), such as a polynomial, or
an exponential function, etc. In those applications the x and y variables usually
have different nature, measured in different units, and errors in x and y may have
different magnitude. Such applications are common in statistics and economet-
rics. A detailed presentation of this type of nonlinear models can be found in

recent book [27] , see also its latest edition [28] , updated and expanded.

The second type of nonlinear EIV problems (which is covered by this manual)
is common in image processing applications. In those, data points come from
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a picture, photograph, map, etc. Both x and y variables measure length and
are given in the same units; the choice of the coordinate system is often quite
arbitrary, hence errors in x and y have the same magnitude, on average. Fitting
explicit functions y = g(x) to images is not the best idea: it inevitably forces
a different treatment of the x and y variables, conflicting with the very nature
of the problem. Instead, one fits geometric shapes that are to be found (or
expected) on the given image. Those shapes are usually described geometrically:
lines, rectangles and other polygons, circles, ovals (ellipses), etc. Analytically,
the basic curved shapes—circles and ovals—are defined by implicit quadratic
functions. More complicated curves may be approximated by cubic or quartic

implicit polynomials [150, 176] ; however, the latter are only used on special

occasions and are rare in practice. Our manual is devoted to fitting most basic
geometric curves—circles and circular arcs—to observed data in image processing
applications. This topic is different from the nonlinear EIV regression in other

statistical application mentioned above and covered in [27, 28] . Fitting ellipses

to observed data is another important topic that deserves a separate manual (the
author plans to publish one in the future).

The problem of fitting circles and circular arcs to observed points in 2D images
dates back to the 1950s. Its first instance was rather peculiar: English engineers
and archaeologists examined megalithic sites (stone rings) in the British Isles
trying to determine if ancient people who had built those mysterious structures
used a common unit of length. This work started in 1950s and continued for

several decades [15, 65, 177, 178, 179] ; see an example in Figure 0.1, where

the data are borrowed from [178] .

In the 1960s the necessity of fitting circles emerged in geography [155] . In

the 1970s circles were fitted to experimental observations in microwave engineer-

ing [54, 108] ; see an example in Figure 0.2, where the data are taken from

[15] . Since about 1980 fitting circles became an agenda in many areas of human

practice. We just list some prominent cases below.
In medicine, one estimates the diameter of a human iris on a photograph

[141] , or designs a dental arch from an X-ray [21] , or measures the size of a

fetus on a picture produced by ultrasound. Archaeologists examine the circular

shape of ancient Greek stadia [157] , or determine the size of ancient pottery by

analyzing potsherds found in field expeditions [44, 80, 81, 190] . In industry,

quality control requires estimation of the radius and the center of manufactured

mechanical parts [119] . In mobile robotics, one detects round objects (pillars,

tree trunks) by analyzing range readings from a 2D laser range finder used by a

robot [197] .
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Figure 0.1. The Brogar Ring on Orkney Islands [15, 178] . The

stones are marked by pluses; the fitted circle is the dotted line.

But perhaps the single largest field of applications where circles are fitted to
data is nuclear physics. There one deals with elementary particles born in acceler-
ators and colliders. The newborn particles move along circular arcs in a constant
magnetic field; physicists determine the energy of the particle by measuring the
radius of its trajectory; to this end they fit an arc to a string of mechanical or elec-

trical signals the particle leaves in the detector [45, 53, 82, 106, 107, 136, 173, 174, 175] .

Particles with high energy move along arcs with large radius (low curvature), thus
fitting arcs to nearly straight-looking trajectories is quite common; this task re-
quires very elaborate techniques to ensure accurate results.

We illustrate our discussion by a real life example from archaeology. To
estimate the diameter of a potsherd from a field expedition, the archaeologist
traces the profile of a broken pot – such as the outer rim or base – with a pencil
on a sheet of graph paper. Then he scans his drawing and transforms it into an
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Figure 0.2. Reflection coefficients in microwave engineering

[15] . The observed values are marked by stars; the fitted circle is

the dashed line.

array of pixels (data points). Lastly, he fits a circle to the digitized image by
using a computer.
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Figure 0.3. A typical arc drawn by pencil with a profile gauge
from a circular wheelmade antefix.

A typical digitized arc tracing a circular wheelmade antefix is shown in Fig-
ure 0.3 (this image contains 7452 pixels). The best fitting circle found by a
standard least squares procedure has parameters

(0.1) center = (7.4487, 22.7436), radius = 13.8251.

This does not seem challenging, as the arc in Figure 0.3 is clearly visible to a
naked eye, so one can even reconstruct a circle manually.

Now suppose we can only see a small fragment of the above arc, with very
few points on it. Figure 0.4 shows a sample of merely 22 randomly chosen points
from a tiny part of the original arc. Suppose we are to fit a circle to these points,
without seeing the rest of the image. Is it possible?
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Figure 0.4. A fragment of the arch shown in Figure 0.3.

Visually, the 22 points in Figure 0.4 do not even form a clear circular arc,
they rather look like a shapeless string. Reconstructing a circle manually from
these 22 points appears an impossibility. However, the best computer algorithm
returns the following parameters:

(0.2) center = (7.3889, 22.6645), radius = 13.8111.

Compare this to (0.1). The estimates are strikingly accurate!
The algorithm that produced the estimates (0.2) is the Levenberg-Marquard

geometric fit (minimizing the geometric distances from the given points to the
circle); it is described in Section 4.5. One may naturally want to estimate errors
of the returned values of the circle parameters, but this is a difficult task for the
EIV regression problems. In particular, under the standard statistical models
described in Chapter 6, the estimates of the center and radius of the circle have
infinite variances and infinite mean values! Thus, the conventional error estimates
(based on the standard deviations) would be absurdly infinite. An approximate
error analysis developed in Chapter 7 can be used to assess errors in a more
realistic way; then the errors of the estimates (0.2) happen to be ≈ 0.1.

We see that the problem of fitting circles and circular arcs to images has a
variety of applications. It has attracted attention of scientists, engineers, statis-
ticians, and computer programmers. Many good (and not-so-good) algorithms
were proposed; some to be forgotten and later rediscovered... For example, the
K̊asa algorithm, see our Chapter 5, was published independently at least 13 times,
the first time in 1972 and the last (so far) in 2006, see references in Section 5.1...
But, despite the popularity of circle fitting applications, until 1990s publications
were sporadic and lacked a unified approach.

An explosion of interest to the problem of fitting circles and other geometric
shapes to observed points occurred in the 1990s when it became an agenda is-
sue for the rapidly growing computer science community, because fitting simple
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contours (lines, circles, ellipses) to digitized images was one of the basic tasks
in pattern recognition and computer vision. More general curves are often ap-
proximated by a sequence of segments of lines or circular arcs that are stitched
together (‘circular splines’); see [12, 145, 158, 164, 165].

Since the early 1990s, many new algorithms (some of them truly brilliant)
for fitting circles and ellipses were invented; among those are circle fits using
Riemann sphere [123, 175] and conformal maps of the complex plane [159],
‘direct ellipse fit’ by Fitzgibbon et al. [61, 63, 147] and Taubin’s eigenfit [176],
a sophisticated renormalization procedure due to Kanatani [47, 94, 95] and no
less superb HEIV method due to Leedan and Meer [48, 49, 120], as well as the
Fundamental Numerical Scheme by Chojnacki et al. [47, 48]. Chojnacki and
his collaborators developed a unified approach to several popular algorithms [49]
and did a remarkable job explaining the underlying ideas.

Theoretical investigation also led to prominent accomplishments. These in-
clude consistent curve and surface fitting algorithms due to Kukush, Markovsky,
and van Huffel [114, 130, 167], ‘hyperaccurate’ ellipse fitting methods by Kanatani
[102, 104], and a rather unconventional adaptation of the classical Cramer-Rao
lower bound to general curve fitting problems [42, 96].

The progress made in the last 15 years is indeed spectacular, and the total
output of all these studies is more than enough for a full size book on the subject.
To the author’s best knowledge, no such book exists yet. The last book on fitting
geometric shapes to data was published by Kanatani [95] in 1996. A good (but
rather limited) tutorial on fitting parametric curves, due to Zhang, appeared on
the Internet in about the same year (and in print in 1997, see [198]). These two
publications covered ellipse fitting methods existing in 1996, but not specifically
circle fitting methods. The progress made after 1996 remains unaccounted for.

The goal of this manual is to present the topic of fitting circles and circular
arcs to observed points in full, especially accounting for all the recent achieve-
ments since the mid-1990s. The author tried to cover all aspects of this problem:
geometrical, statistical, and computational. In particular, my purpose was to
present numerical algorithms in relation to one another, with underlying ideas,
emphasize strong and weak points of each algorithm, and indicate how to com-
bine them to achieve the best performance. The manual thoroughly addresses
theoretical aspects of the fitting problem which are essential for understanding
advantages and limitations of practical schemes. Lastly, an attempt was made to
identify issues that remain obscure and may be subject of future investigation.

At the same time the manual is geared toward the end user, it is written
for practitioners who want to learn the topic or need to select the right tool for
their particular task. The author tried to avoid purely abstract issues detached
from practice, and presented topics that were deemed most important for image
processing applications.



PREFACE xiii

We assume the reader has a good mathematical background (being at ease
with calculus, geometry, linear algebra, probability and statistics) and some ex-
perience in numerical analysis and computer programming. We are not using
any specific machine language in the manual, though the MATLAB code of all
relevant algorithms may be found on our web page [84].

Chapter 1: Introduction and history

Chapter 2: Exact solution and properties

Fitting lines

Chapter 3: Theory: geometric analysis

Chapter 4: Practice: geometric fits

Chapter 5: Practice: algebraic fits

Fitting circles

Chapter 6: Fitting general curves

Chapter 7: Fitting circles

Statistical analysis

Advances techniques

Chapter 8: Mathematically sophisticated fits

Figure 0.5. The structure of the manual.

The manual is organized as follows, see diagram in Figure 0.5. Chapter 1
is an introduction to the Errors-In-Variables regression analysis and gives its
brief history (mostly in the context of linear model). Chapter 2 summarizes the
solution of the linear EIV problem and highlights its main properties (geometric
and statistical). These two chapters do not deal with circles or arcs.
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Chapter 3 gives the theory of fitting circles by least squares. It addresses
the existence and uniqueness of the solution, describes various parametrization
schemes for circles, and analyzes the shape of the objective function to be mini-
mized (culminating in the important Two Valley Theorem).

Chapter 4 and Chapter 5 are devoted to practical circle fitting methods.
In Chapter 4 circles are fitted by minimizing geometric distances from ob-

served points to the fitting circle, which is a classical (or geometric) fit. This
is a nonlinear problem that has no closed form solution, so all algorithms are
iterative, thus computationally intensive and subject to occasional divergence.
We describe all popular schemes, in a historic perspective, emphasizing relations
between one another, highlighting their their advantages and drawbacks.

Chapter 5 deals with simplified circle fits, so called algebraic fits. They are
fast, non-iterative, and do not suffer from divergence. However they are (in
many cases) less accurate than the geometric fits of Chapter 4. Algebraic fits are
often used in mass data processing (especially in nuclear physics), where speed
is of paramount importance. Algebraic fits are also used for initializing iterative
geometric fitting procedures.

The reader interested in practical algorithms only can find all the relevant
information is Chapters 3–5.

Chapter 6 and Chapter 7 make a sharp turn and plunge into statistical anal-
ysis of curve fitting methods. This is theoretical material, but we tried to relate
it to practice and explain all constructions and conclusions in practical terms.
Chapter 6 is devoted to general nonlinear EIV regression, i.e. it covers arbitrary
curves. Chapter 7 focuses on the specific task of fitting circles and circular arcs.

Chapter 6 and Chapter 7 may be of interest to professional statisticians.
Lastly, Chapter 8 presents a sample of ‘exotic’ circle fits, including some

mathematically sophisticated procedures – they make use of complex numbers
and conformal mappings of the complex plane. This chapter is best for scientists
with a solid mathematical background. The ideas behind methods of Chapter 8
are quite intriguing and resulting fits look very promising. This may be a starting
point for future development of this subject.



Symbols and notation

Here we fix some notation used throughout the manual. First we describe our
notational system for matrices and vectors:

• R denotes the set of real numbers (real line), Rn the n-dimensional Eu-
clidean space, and C the complex plane.

• Matrices are always denoted by capital letters typeset in bold-face, such
as M or U. The identity matrix is denoted by I.

• Vectors are denoted by letters in bold-face, either capital or lower-case,
such as A or a. By default, all vectors are assumed to be column-vectors.
Row-vectors are obtained by transposition.

• The superscript T denotes the transpose of a vector or a matrix. For
example, if A is a vector, then it is (by default) a column-vector, and
the corresponding row-vector is denoted by AT .

• diag{a1, a2, . . . , an} denotes a diagonal matrix of size n×n with diagonal
entries a1, a2, . . . , an.

• For any vector and matrix, ‖A‖ means its 2-norm, unless otherwise
stated.

• κ(A) = ‖A‖ ‖A−1‖ denotes the condition number of a square matrix A
(relative to the 2-norm).

• Equation Ax ≈ b, where A is an n×m matrix, x ∈ Rm is an unknown
vector, and b ∈ Rn is a known vector (n > m), denotes the classical
least square problem whose solution is x = argmin ‖Ax− b‖2.

• The singular value decomposition (SVD) of an n×m matrix A is denoted
by A = UΣVT , where U and V are orthogonal matrices of size n×n and
m×m, respectively, and Σ is a diagonal n×m matrix whose diagonal
entries are real non-negative and come in a decreasing order:

σ1 ≥ σ2 ≥ · · · ≥ σp, p = min{m,n}.

If n > m, then a short SVD is given by A = U′Σ′VT , where U consists
of the first (left) m columns of U and Σ′ consists of the first (top) m
rows of Σ.

• A− denotes the Moore-Penrose pseudoinverse of a matrix A. It is given
by A− = VΣ−UT , where Σ− is a diagonal m×n matrix whose diagonal

xv
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entries are

σ−i =

{
1/σi if σi > 0

0 if σi = 0

For probability, we use the following notation:

• Prob(A) denotes the probability of an event A.
• E(X) denotes the mean value of a random variable X.
• Var(X) denotes the variance of a random variable X.
• Cov(X, Y ) denotes the covariance of random variables X and Y .
• N(µ, σ2) denotes a normal random variable with mean µ and variance

σ2.
• Xn →L X denotes the weak convergence of random variables, i.e. the

convergence of the distribution functions of Xn to the distribution func-
tion of X at every point where the latter is continuous.

• OP (σk) denotes a random variable, X, that may depend on σ and such
that σ−kX is bounded in probability; i.e. such that for any ε > 0 there
exists Aε > 0 such that Prob{σ−kX > Aε} < ε for all σ > 0.

For statistics, we use the following notation:

• Given a sample x1, . . . , xn we denote its sample mean by x̄ = 1
n

∑n
i=1 xi.

• We conveniently extend the above sample mean notation as follows:

xx =
1

n

∑
x2

i , xy =
1

n

∑
xiyi, etc.

• Θ usually denotes the vector of unknown parameters, and θ1, θ2, . . . its
components. For example, a and b are the parameters of an unknown
line y = a + bx.

• We use ‘tildas’ for the true values of the unknown parameters, i.e. we
write Θ̃ = (θ̃1, θ̃2, . . .). For example, ã and b̃ are the true values of the
parameters a and b.

• We use ‘hats’ for estimates of the unknown parameters, i.e. we write Θ̂ =
(θ̂1, θ̂2, . . .). For example, â and b̂ denote estimates of the parameters a
and b.

• MLE is an abbreviation for Maximum Likelihood Estimate. For example,
we write âMLE for the MLE of the parameter a.

• bias(â) = E(â) − ã denotes the bias of an estimate â. An estimate is
unbiased if its bias is zero.

• MSE is the Mean Squared Error (of an estimate). For example,

MSE(â) = E
[
(â− ã)2

]
= Var(â) +

[
bias(â)

]2
.
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• For a parameter vector Θ, the MSE is a matrix

MSE(Θ̂) = E
[
(Θ̂− Θ̃)(Θ̂− Θ̃)T

]
= Cov(Θ̂) +

[
bias(Θ̂)

][
bias(Θ̂)

]T
,

where Cov(Θ̂) stands for the covariance matrix of the estimate Θ̂.





CHAPTER 1

Introduction and historic overview

1.1. Classical regression

In a classical regression problem, one deals with a functional relation y = g(x)
between two variables, x and y. As an archetype example, let x represent time
and y = g(x) a certain quantity observed at time x (say, the outside temperature
or the stock market index), then one would like to model the evolution of g.

One records a number of observations (x1, y1), . . . , (xn, yn) and tries to ap-
proximate them by a relatively simple model function, such as linear y = a + bx
or quadratic y = a + bx + cx2 or exponential y = aebx, etc., where a, b, c, . . . are
the respective coefficients (or parameters of the model).

Generally, let us denote the model function by y = g(x;Θ), where Θ =
(a, b, . . .) is the vector of relevant parameters. The goal is to find a particular

function g(x; Θ̂) in that class (i.e. choose a particular value Θ̂ of Θ) that ap-
proximates (fits) the observed data (x1, y1), . . . , (xn, yn) best. It is not necessary

to achieve the exact relations yi = g(xi; Θ̂) for all (or any) i, because yi’s are
regarded as imprecise (or noisy) observations of the functional values.

A standard assumption in statistics is that yi’s are small random perturbations
of the true values ỹi = g(xi; Θ̃), i.e.

yi = g(xi; Θ̃) + εi, i = 1, . . . , n

where Θ̃ stands for the true (but unknown) value of Θ, and (small) errors εi are
independent normally distributed random variables with zero mean and, in the
simplest case, common variance σ2. Then the joint probability density function
is

f(y1, . . . , yn) =
1

(2πσ2)n/2
exp

[
− 1

2σ2

n∑
i=1

(
yi − g(xi;Θ)

)2
]
,

so the log-likelihood function is

(1.1) log L(Θ, σ2) = − ln(2πσ2)n/2 − 1

2σ2

n∑
i=1

[
yi − g(xi;Θ)

]2
.

1
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Thus the maximum likelihood estimate Θ̂ of Θ is obtained by minimizing the
sum of squares

(1.2) F(Θ) =
n∑

i=1

[
yi − g(xi;Θ)

]2
,

which leads us to the classical least squares. This method for solving regression
problems goes back to C.-F. Gauss [69] and A.-M. Legendre [121] in the early
1800’s. It is now a part of every standard undergraduate statistics course.

0 2 4 6 8 10
−5

−4

−3

−2

−1

0

1

2

3

4

5

x

y

Figure 1.1. Ordinary regression minimizes the sum of squares of
vertical distances: a cubic polynomial fitted to 10 data points.

We emphasize that the x and y variables play different roles: x is called a con-
trol variable (controlled by the experimenter), its values x1, . . . , xn are error-free,
and y is called a response variable (observed as a response), its values y1, . . . , yn

are imprecise (contaminated by noise). Geometrically, the regression procedure
minimizes the sum of squares of vertical distances (measured along the y axis)
from the data points (xi, yi) to the graph of the function y = g(x;Θ), see Fig-
ure 1.1.

For example, if one deals with a linear relation y = a + bx, then the least
squares estimates â and b̂ minimize the function

F(a, b) =
n∑

i=1

(yi − a− bxi)
2.

Solving equations ∂F/∂a = 0 and ∂F/∂b = 0 gives

(1.3) â = ȳ − b̂x̄ and b̂ = sxy/sxx,

where x̄ and ȳ are the ‘sample means’

(1.4) x̄ =
1

n

n∑
i=1

xi and ȳ =
1

n

n∑
i=1

yi
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and

sxx =
n∑

i=1

(xi − x̄)2

syy =
n∑

i=1

(yi − ȳ)2

sxy =
n∑

i=1

(xi − x̄)(yi − ȳ).

are the components of the so called ‘scatter matrix’

(1.5) S =

[
sxx sxy

sxy syy

]
,

which characterizes the ‘spread’ of the data set about its centroid (x̄, ȳ).

Remark 1.1. To estimate a and b, one does not need to know the variance σ2. It can
be estimated separately by maximizing the log-likelihood function (1.1) with respect
to σ2, which gives

(1.6) σ̂2 =
1
n

n∑
i=1

(yi − â− b̂xi)2.

This estimate is slightly biased, as E(σ̂2) = n−2
n σ2. It is customary to replace n in the

denominator with n − 2, which gives an unbiased estimate of σ2. Both versions of σ̂2

are strongly consistent, i.e. they converge to σ2 with probability one.

The regression model has excellent statistical properties. The estimates â and
b̂ are strongly consistent, i.e. â → a and b̂ → b as n →∞ (with probability one),

and unbiased, i.e. E(â) = a and E(b̂) = b. They have normal distributions with
variances

σ2
a = σ2

(
x̄2

sxx

+
1

n

)
, σ2

b =
σ2

sxx

.

These variances are the smallest among the variances of unbiased estimators, i.e.
they coincide with the Cramer-Rao lower bounds. Hence the estimates â and b̂
are 100% efficient. All around, they are statistically optimal in every sense.

Remark 1.2. Suppose the errors εi are heteroscedastic, i.e. have different variances:
εi ∼ N(0, σ2

i ). The maximum likelihood estimate of Θ is now obtained by the weighted
least squares:

F(Θ) =
n∑

i=1

wi

[
yi − g(xi;Θ)

]2
,

where the weights are set by wi = σ−2
i . In the linear case, y = a+ bx, the estimates are

still given by (1.3), but now the formulas for the sample mean and the scatter matrix
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should incorporate weights, e.g.

(1.7) x̄ =
1
n

n∑
i=1

wixi, sxx =
n∑

i=1

wi(xi − x̄)2, etc.

Thus, heteroscedasticity only requires minor changes in the regression formulas.

1.2. Errors-in-variables (EIV) model

Recall that the classical regression problem was solved in the early 1800s. In
the late XIX century statisticians encountered another problem, which looked
very similar, but turned out substantially different and far more difficult. In fact
the superficial similarity between the two caused a great deal of confusion and
delayed the progress for several decades.

That new problem is reconstructing a functional relation y = g(x) given
observations (x1, y1), . . . , (xn, yn) in which both variables are subject to errors.
We start with an example and describe a formal statistical model later.

Suppose (see Madansky [127]) we wish to determine ρ, the density of iron,
by making use of the relation

(1.8) MASS = ρ× VOLUME.

We can pick n pieces of iron and measure their volumes x1, . . . , xn and masses
y1, . . . , yn. Given these data, we need to estimate the coefficient ρ in the functional
relation y = ρx. We cannot use the exact formula yi = ρxi for any i, because
the measurements may be imprecise (our pieces of iron may be contaminated by
other elements).

Similar problems commonly occur in economics (where, for instance, x may
be the price of a certain good and y the demand, see Wald [187]) and in sociology.
For a fascinating collection of other examples, including the studies of A-bomb
survivors, see Chapter 1 in [28].

So how do we solve the iron density problem? For example, we can assume
(or rather, pretend) that the volumes xi’s are measured precisely and apply the
classical regression of y on x, i.e. determine y = bx and set ρ = b. Alternatively,
we can assume that our masses yi’s are error-free and do the regression of x on
y, i.e. find x = b′y and then set ρ = 1/b′.

This may sound like a good plan, but it gives us two different estimates, ρ1 = b
and ρ2 = 1/b′, which should make us at least suspicious. An objection was raised
against this strategy as early as in 1901 by K. Pearson, see p. 559 in [144]: ‘we
get one straight line or plane if we treat some one variable as independent, and a
quite different one if we treat another variable as the independent variable’. See
Figure 1.2.

It was later determined that under natural statistical assumptions (to be
described shortly) both estimates, ρ1 and ρ2, are inconsistent and may be heavily
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Figure 1.2. 50 data points (marked by dots) are fitted by two
methods: the regression of y on x is the red lower line and the
regression of x on y is the blue upper line. Their slopes are 0.494
and 0.508, respectively.

biased, see e.g. [8, 118, 142]; the consequences of this biasedness in econometrics
are discussed in Chapter 10 of [128]. In fact, ρ1 systematically underestimates
the true density ρ, and ρ2 systematically overestimates it.

Thus the new type of regression problem calls for non-classical approaches.
First we need to adopt an appropriate statistical model in which both xi’s and yi’s
are subject to errors; it is called errors-in-variables (EIV) model1. It assumes
that there are some ‘true’ values x̃i and ỹi, that are linked by the (unknown)
functional relation ỹi = g(x̃i), and the experimenters observe their perturbed
values:

(1.9) xi = x̃i + δi, yi = ỹi + εi, i = 1, . . . , n.

Here δ1, . . . , δn, ε1, . . . , εn are 2n independent random variables with zero mean.
In the simplest case, one can assume that δi’s have a common variance σ2

x

and εi’s have a common variance σ2
y . Furthermore, it is common to assume that

δi and εi are normally distributed, i.e.

(1.10) δi ∼ N(0, σ2
x) and εi ∼ N(0, σ2

y).

We also need to make some assumptions about the true values x̃i’s and ỹi’s,
as they are neither random observations not the model parameters (yet). There
are two basic ways of treating these ‘intermediate’ objects.

First, the true values x̃i’s and ỹi’s may be regarded as fixed (non-random),
then they have to be treated as additional parameters. They are sometimes

1Another popular name is measurement error (ME) model, but we prefer EIV.



6 1. INTRODUCTION AND HISTORIC OVERVIEW

referred to as ‘incidental’ or ‘latent’ parameters, or even ‘nuisance’ parameters
(as their values are normally of little interest). This interpretation of x̃i’s and
ỹi’s is known as the functional model .

Alternatively, one can regard x̃i’s and ỹi’s as realizations of some underlying
random variables that have their own distribution. It is common to assume that
x̃i’s are sampled from a normal population N(µ, σ2), and then ỹi’s are computed
by ỹi = g(x̃i). In that case δi and εi’s are usually assumed to be independent of
x̃i’s and ỹi’s. The mean µ and variance σ2 of the normal population of x̃i’s can
be then estimated along with the parameters of the unknown function g(x). This
treatment of the true values is known as the structural model .

This terminology is not quite intuitive, but it is currently adopted in the
statistics literature. It goes back to Kendall’s works [109, 110] in the 1950s and

became popular after the first publication of Kendall and Stuart’s book [111] .

Fuller [66] suggests a simple way of remembering it: the model is Functional (F)
if the true points are Fixed; and the model is Structural (S) if the true points are
Stochastic.

Before we turn to the solution of the EIV regression problem (which is typified
by the iron density example), we describe a special version of the EIV model,
which constitutes the main subject of this manual.

1.3. Geometric fit

In the late 1800s statisticians encountered a special case of the EIV regression
that arose in the analysis of images (photographs, drawings, maps). For example,
given an imperfect line on an image, one wants to straighten it up, i.e. find an
ideal line approximating the visible line contour. To this end one can mark several
points on the contour and try to fit a perfect straight line to the marked points.

More generally, one may want to approximate a round object on an image by
a perfect circle, or an oval by a perfect ellipse, or a box by a perfect rectangle,
etc. We call this task geometric fitting problem. It consists of approximating a
visible contour on an image by a simple geometric figure (line, curve, polygon,
etc). We discuss approximation by lines in this section.

In a coordinate system, the given points on the visible contour can be recorded
as (x1, y1), . . . , (xn, yn), and one looks for the best fitting line in the form y =
a+ bx. Hence again the problem looks like a familiar regression. But a close look
reveals that both xi’s and yi’s may be imprecise, hence we are in the framework
of the EIV model.

Furthermore, there is a novel feature here: due to the geometric character of
the problem, the errors in x and y directions should have the same magnitude,
on average, hence we have a special case of the EIV model characterized by

(1.11) σ2
x = σ2

y .
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In this case the ‘noise’ vector (δi, εi) has a normal distribution with zero mean
and a scalar covariance matrix, i.e. the random noise is isotropic in the xy plane.
The isotropy means that the distribution of the noise vector is invariant under
rotations. This property is natural in image processing applications, as the choice
of coordinate axes on the image is often arbitrary, i.e. there should not be any
differences between the x, or y, or any other directions.

Conversely, suppose that the random vector (δi, εi) has two basic properties
(which naturally hold in image processing applications):

(a) it is isotropic, as described above,
(b) its components δi and εi are independent.

Then it necessarily has a normal distribution. This is a standard fact in proba-
bility theory, see e.g. [14] or Section III.4 of [60] . Thus the assumption about
normal distribution (1.10) is not a luxury anymore, but a logical consequence of
the more basic assumptions (a) and (b).
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Figure 1.3. Orthogonal regression minimizes the sum of squares
of orthogonal distances.

A practical solution to the special case σ2
x = σ2

y of the EIV model was pro-
posed as early as in 1877 by Adcock [1] based on purely geometric (rather than
statistical) considerations. He defines the fitting line y = a + bx that is overall
closest to the data points, i.e. the one which minimizes

(1.12) F =
n∑

i=1

d2
i ,

where di denotes the geometric (orthogonal) distance from the point (xi, yi) to
the fitting line, see Figure 1.3. By using elementary geometry, we obtain

(1.13) F(a, b) =
1

1 + b2

n∑
i=1

(yi − a− bxi)
2.
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Solving the equation ∂F/∂a = 0 yields

(1.14) a = ȳ − bx̄,

where x̄ and ȳ are the sample means, cf. Section 1.1. By the way, recall that
(1.14) also holds in the classical case, cf. (1.3). Now eliminating a from (1.13)
gives us a function of one variable

F(b) =
syy − 2bsxy + sxxb

2

1 + b2
,

where sxx, sxy, syy are the components of the scatter matrix, cf. Section 1.1. Next,
the equation ∂F/∂b = 0 reduces the problem to a quadratic equation,

(1.15) sxyb
2 − (syy − sxx)b− sxy = 0.

It has two roots, but a careful examination reveals that the minimum of F cor-
responds to the following one:

(1.16) b =
syy − sxx +

√
(syy − sxx)2 + 4s2

xy

2sxy

.

This formula applies whenever sxy 6= 0. In the case sxy = 0, we need to set b = 0
if sxx > syy and b = ∞ if sxx < syy. We encourage the reader to derive the
formula (1.16) and carefully examine the special case sxy = 0.

The above solution may be elementary, by our modern standards, but it has
a history showing its non-trivial character. It was first obtained in 1878 by
Adcock [2], who incidentally made a simple calculational error. Adcock’s error
was corrected the next year by Kummell [117], but in turn, one of Kummell’s
formulas involved a more subtle error. Kummell’s error was copied by some other
authors in the 1940s and 1950s (see [89, 126]). Finally it was corrected in 1959
by Madansky [127]. Madansky’s work [127] is perhaps the most cited in the
early studies on the EIV regression.

We call the fitting method based on minimization of the sum of squares of
orthogonal (geometric) distances from the data points to the fitted contour or-
thogonal fit or geometric fit . Despite the natural appeal of the orthogonal fitting

line, the early publications [1, 2, 117] in 1877-79 passed unnoticed. Twenty
years later the orthogonal fitting line was independently proposed by Pearson
[144] , and another 20 years later – by Gini [72] .

Pearson and Gini made another important observation: the line which min-
imizes (1.12) is the major axis of the scattering ellipse associated with the data
set. The scattering ellipse is defined by equation[

x− x̄
y − ȳ

]T

S

[
x− x̄
y − ȳ

]
= 1,
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its center is (x̄, ȳ) and its axes are spanned by the eigenvectors of the scatter
matrix S. This fact establishes a link between the orthogonal fit and the principal
component analysis of linear algebra.

Pearson [144] also estimated the angle θ = tan−1 b which the fitting line made
with the x axis and found a simple formula for it:

(1.17) tan 2θ =
2sxy

sxx − syy

.

We leave its verification to the reader as an exercise.
Adcock and Pearson were motivated by geometric considerations and did not

use probabilities. Only in 1930s their method was incorporated into the formal
statistical analysis. Koopmans [113] (see also Lindley [126]) determined that the
orthogonal fit provided the maximum likelihood estimate under the assumptions
(1.9)–(1.11). Recall that the classical least squares fit (1.2) also maximizes the
likelihood in the ordinary regression model (1.1). Thus there is a deep analogy
between the two regression models.

The geometric nature of the orthogonal fit makes the resulting line indepen-
dent of the choice of the coordinate system on the image. In other words, the
geometric fit is invariant under orthogonal transformations (rotations and trans-
lations) of the coordinate frame.

The invariance under certain transformations is very important. We say that
a fitting line is invariant under translations if changing the data coordinates by

(1.18) Tc,d : (x, y) 7→ (x + c, y + d)

will leave the line unchanged, i.e. its equation in the new coordinate system will
be y + d = a + b(x + c). Similarly we define invariance under rotations

(1.19) Rθ : (x, y) 7→ (x cos θ + y sin θ,−x sin θ + y cos θ)

and under scaling of variables

(1.20) Sα,β : (x, y) 7→ (αx, βy).

An important special case of a scaling transformation is α = β; it is called
a similarity (or sometimes a dilation; in formal mathematics it is known as a
homothety). We will denote it by

(1.21) Sα = Sα,α : (x, y) 7→ (αx, αy).

It takes little effort to verify that the orthogonal fitting line is invariant under Tc,d

and Rθ, as well as Sα, but not invariant under general scaling transformations
Sα,β with α 6= β. We leave the verification of these facts to the reader.

The orthogonal fit has a clear appeal when applied to regular geometric pat-
terns. Figure 1.4 shows four data points placed at vertices of a rectangle. While
classical regression lines are skewed upward or downward (the first and second
panels of Figure 1.4), the orthogonal regression line cuts right through the middle
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of the rectangle and lies on its axis of symmetry. Arguably, the orthogonal fitting
line would “please the eye” more than any other line.

However, the orthogonal fit leads to an inconsistency if one applies it to a
more general EIV model, where σ2

x 6= σ2
y . This inconsistency stems from the

non-invariance of the orthogonal fitting line under scaling transformations Sα,β.
For example, let us again consider the task of determining the iron density

by using (1.8) and measuring volumes xi’s and masses yi’s of some iron pieces,
cf. the previous section. If we employ the orthogonal fit to the measurements
(x1, y1), . . . , (xn, yn), then the fitting line y = bx, and the resulting estimate
of the iron density ρ = b, would depend on the choice of units in which the
measurements xi’s and yi’s are recorded. That is, if we rescale the variables by
(x, y) 7→ (αx, βy), the equation of the orthogonal fitting line in the new coordinate
system would be βy = b′(αx), where b′ 6= b. In other words, a different density
would be obtained if we change pounds to kilograms or tons, and similarly liters
to bushels or cubic meters.

This objection was raised in 1937 by Roos [156] and further discussed in
the statistics literature in the 1940s [89, 187]. Thus the orthogonal fit has its
limitations, it is essentially restricted to the special case σ2

x = σ2
y of the EIV model.

Some modern books, see e.g. [28], strongly warn against the use of orthogonal
fitting line in EIV applications with σ2

x 6= σ2
y , and more generally, against the use

of other techniques that are based on any unreliable assumptions about σ2
x and

σ2
y .

We briefly overview basic features of the general EIV model in the next section
(though not attempting anything close to a comprehensive coverage).

1.4. Solving a general EIV problem

Let us turn back to the EIV model (1.9)–(1.10) without assuming (1.11), i.e.
leaving σ2

x and σ2
y unconstrained.

Kummell [117] was perhaps the first who examined, in 1879, the task of
determining the underlying functional relation y = g(x) in the EIV context, and
realized that this could not be done in any reasonable sense (!), unless one makes
an extra assumption on the relation between σ2

x and σ2
y . Even in the simplest,

linear case y = a + bx, there is no sensible way to estimate the parameters a and
b without extra assumptions. The problem is just unsolvable, however simple it
may appear!

Many other researchers arrived at the same conclusion in the early XX century.
The realization of this stunning fact produced a long turmoil in the community
lasting until about 1950s and marked by confusion and controversy. A. Madansky,
for example, devotes a few pages of his 1959 paper [127] describing the shock
of an average physicist who would learn about the unsolvability of the ‘simple’
regression problem, and how statisticians could explain it to him.
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Figure 1.4. The regression of y on x minimizes the sum of squares
of vertical distances (top); the regression of x on y does the same
with horizontal distances (middle); the orthogonal regression min-
imizes the sum of squares of orthogonal distances (bottom).

Later the insolvability of this problem was proved in mathematical terms.
First, it was established in 1956 by Anderson and Rubin [9] (see also [73]) that
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even in the linear case y = a + bx the likelihood function was unbounded (its
supremum was infinite), thus maximum likelihood estimates could not be deter-
mined. Interestingly, the likelihood function has critical points, which have been
occasionally mistaken for maxima; only in 1969 the issue was resolved: M. Solari
[168] proved that all critical points were just saddle points.

Second (and more importantly), it was shown in 1977 by Nussbaum [139]
(see also page 7 in [40]) that no statistical procedure could produce strongly

consistent estimates â and b̂ (which would converge to the true values of a and b
as n → ∞). See also the discussion of identifiability in the book [40] by Cheng
and Van Ness.

To make the EIV regression model solvable, Kummel [117] assumed that

(1.22) the ratio κ = σx/σy is known.

He justified his assumption by arguing that experimenters ‘usually know this ratio
from experience’. Later this assumption was commonly adopted in the statistics
literature. Recently Fuller [66] called the EIV model satisfying the assumptions
(1.9), (1.10), and (1.22) the ‘classical EIV model’.
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Figure 1.5. The EIV fit minimizes the sum of squares of ‘skewed’
distances from the data points to the line. Here κ = 2.

Now the EIV regression problem has a well defined solution. In 1879 Kummell
[117] gave formulas for the best fitting line that involved κ. His line y = a + bx
minimizes

(1.23) F =
1

1 + κ2b2

n∑
i=1

(yi − a− bxi)
2
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and its slope is estimated by

(1.24) b =
κ2syy − sxx +

√
(κ2syy − sxx)2 + 4κ2s2

xy

2κ2sxy

,

compare this to (1.16). The intercept is again a = ȳ − bx̄, as in (1.14).
This line minimizes the sum of squares of the distances to the data points

(xi, yi) measured along the vector (κb,−1), see Figure 1.5. Kummell arrived at
his formula rather intuitively, but later it was determined that he actually found
the maximum likelihood solution, cf. [113, 126].

In the special case κ = 1, i.e. σ2
x = σ2

y , the vector (κb,−1) = (b,−1) is normal
to the line y = a + bx, thus we arrive at the familiar orthogonal fit. Hence, the
EIV linear regression (1.24) includes the orthogonal fit as a particular case.

The slope b given by (1.24) is monotonically increasing with κ (this follows
from the standard fact s2

xy ≤ sxxsyy by some algebraic manipulations, which we
leave to the reader as an exercise). In the limit κ → 0, the EIV regression line
converges to the classical regression of y on x with the slope b = sxy/sxx, cf. (1.3).
Similarly, in the limit κ → ∞, the EIV regression line converges to the classical
regression of x on y with the slope b = syy/sxy. Thus the classical regressions (of
y on x and of x on y) are the extreme cases of the EIV regression.

The EIV line minimizing (1.23) can be made invariant under rescaling of co-
ordinates x 7→ αx and y 7→ βy, as the scaling factors α and β can be incorporated
into the ratio κ by the obvious rule κ 7→ κα/β. This fact was pointed out in 1947
by Lindley [126], who concluded that the estimate (1.24) thus conformed to the
basic requirement of the EIV model: it does not depend on the units in which
the measurements x1, . . . , xn and y1, . . . , yn are recorded.

Actually, if one rescales the coordinates by x 7→ x and y 7→ κy, then in the
new variables we have κ = 1. Thus the EIV regression line can be transformed
to the orthogonal fitting line. Therefore, the EIV linear regression model (with
the known ratio κ = σx/σy) can be converted to the orthogonal regression model
by a simple rescaling of the coordinates, and vice versa.

But we emphasize that the general EIV regression and the orthogonal fit must
conform to different requirements:

• The EIV regression must be invariant under scaling of the variables x
and y (resulting from the change of units in which these variables are
measured).

• The orthogonal fit (due to its geometric nature) must be invariant under
rotations and translations of the coordinate frame on the xy plane, as
well as under similarities resulting from a change of unit of length.

This difference has important consequences for nonlinear regression discussed in
Section 1.9.
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1.5. Non-linear nature of the ‘linear’ EIV

It may be enlightening to interpret the orthogonal regression problem geomet-
rically in the space R2n with coordinates x1, y1, . . . , xn, yn. We follow Malinvaud
(Chapter 10 of [128]). Our observations (x1, y1), . . . , (xn, yn) are represented by
one point (we denote it by X ) in this multidimensional space. To understand the
construction of the orthogonal fitting line, consider the subset P ⊂ R2n defined
by

(x1, y1, . . . , xn, yn) ∈ P ⇐⇒ ∃a, b : yi = a + bxi ∀i,
i.e. P consists of all (x1, y1, . . . , xn, yn) ∈ R2n such that the n planar points
(x1, y1), . . . , (xn, yn) are collinear. Note that the true values x̃1, ỹ1, . . . , x̃n, ỹn

are represented by one point (we denote it by X̃ ) in P, i.e. X̃ ∈ P.
The orthogonal fitting line minimizes the sum

n∑
i=1

(xi − x̃i)
2 + (yi − ỹi)

2,

which is the square of the distance (in the Euclidean metric) between the points
X and X̃ . Thus, the orthogonal fitting procedure corresponds to choosing a point
X̃ ∈ P closest to the point X ∈ R2n representing the data. In other words, we
‘simply’ project the given point X onto P orthogonally. Or is it that simple?

It takes a little effort to verify that P is a nonlinear submanifold (‘surface’)
in R2n. Indeed, it is specified by n− 2 independent relations

(1.25)
yi+1 − yi

xi+1 − xi

=
yi+2 − yi

xi+2 − xi

, i = 1, . . . , n− 2,

each of which means the collinearity of the three planar points (xi, yi), (xi+1, yi+1),
and (xi+2, yi+2). The relations (1.25) are obviously quadratic, hence P is an
(n + 2)-dimensional quadratic surface (variety) in R2n.

X

XP
X
~

Figure 1.6. Projection of the point X onto the quadratic mani-
fold P.

Projecting a point X onto a quadratic surface is not a trivial, and definitely
not a linear, problem. This geometric interpretation should dispel our illusion
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(if we still have any) that we deal with a linear problem, it unmasks its truly
nonlinear character.

Imagine, for example, the task of projecting a point X ∈ R2 onto a quadric,
say an ellipse a2x2 + b2y2 = 1. This is not a simple problem, its exact solution
involves finding roots of a 4th degree polynomial [162]. In a sense, we are lucky
that the projection of our data point X ∈ R2n onto P reduces to just a quadratic
equation (1.15).

Besides, the projection may not be unique (for example when X lies on the
major axis of the ellipse near the center, see Figure 1.6). We will actually see
that the orthogonal fitting line may not be unique either, cf. Section 2.3.

To further emphasize the nonlinear nature of the EIV regression, suppose for
a moment that the errors are heteroscedastic, i.e.

δi ∼ N(0, σ2
x,i) and εi ∼ N(0, σ2

y,i),

where the ratio of variances is known, but it differs from point to point, i.e. we
assume that

κi = σx,i/σy,i

is known for every i = 1, . . . , n. Recall that in the classical regression (Re-
mark 1.2) the heteroscedasticity of errors does not affect the linear nature of the
problem. Now, in the EIV model, the best fitting line should minimize

F(a, b) =
n∑

i=1

(yi − a− bxi)
2

1 + κ2
i b

2
.

Despite its resemblance to (1.23), the minimization of this F cannot be reduced
to a quadratic (or any finite degree) polynomial equation. Here “finite degree”
means a degree independent of the sample size n. This is a hard-core nonlinear
problem that has no closed form solution; its numerical solution requires iterative
algorithms.

In other words, the hidden nonlinear nature of the ‘linear’ EIV fit may come
in different ways at different stages. The more general assumptions on errors one
makes the more serious difficulties one faces.

Yet another explanation why the linear EIV regression has an essentially non-
linear character was given by Boggs et al., see [23].

Overall, the linear EIV model, though superficially resembling the classical
linear regression, turns out to be dissimilar in many crucial ways. The sharp
contrast between these two models is now recognized by many authors. As the
textbook [29] puts it, ‘Regression with errors in variables (EIV) ... is so funda-
mentally different from the simple linear regression ... that it is probably best
thought of as a completely different topic.’
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1.6. Statistical properties of the orthogonal fit

Our manual is devoted to the orthogonal fitting problem, and from now on
we adopt the statistical model assumptions (1.9), (1.10), and (1.11). Under these
assumptions the orthogonal fit maximizes the likelihood function, i.e. provides
the Maximum Likelihood Estimate (a formal proof of this fact will be given in
Section 6.3).

In this section we touch upon the basic statistical properties of the linear
orthogonal fit, i.e. the behavior of the estimates α̂ and β̂ of the parameters of the
fitting line y = α + βx (we use α and β here, instead of the previous a and b, to
be consistent with the notation in the papers we will refer to).

Our discussion will shed more light on a stark dissimilarity between the or-
thogonal fit and the classical regression, whose nice features we mentioned in
Section 1.1. Even a quick look reveals a totally different (and somewhat shock-
ing) picture.

To begin with, the distribution of the estimates α̂ and β̂ is not normal and
does not belong to any standard family of probability distributions. Only in
1976, explicit formulas for their density functions were found by Anderson and
others [7, 10]; see Section 2.4. Those expressions are overly complicated, involve
double-infinite series, and Anderson [7] promptly conceded that they are not very
useful for practical purposes. Instead, he and Kunitomo [118] derived various

approximations to the distribution functions of α̂ and β̂, which turned out to be
practically accurate.

Second, and worse, the estimates α̂ and β̂ do not have finite moments, i.e.

E(|α̂|) = ∞ and E(|β̂|) = ∞.

Thus they also have infinite mean squared errors:

E
(
[α̂− α]2

)
= ∞ and E

(
[β̂ − β]2

)
= ∞.

These stunning facts were also revealed in 1976 by Anderson [7]. Intuitively, one
can see why this happens from (1.16), where the denominator can take value zero,
and its probability density does not vanish at zero. We encourage the reader to
closely examine this observation.

Until Andesron’s discovery, researchers ‘approximated’ the moments of the
estimates α̂ and β̂ as follows. They employed Taylor expansion, dropped higher
order terms, and obtained some ‘approximate’ formulas for the moments of α̂
and β̂ (including their means and variances). Anderson demonstrated that all
those formulas were fundamentally flawed, as the actual moments did not ex-
ist. Anderson said that those formulas should be regarded as ‘moments of some
approximations’, rather than ‘approximate moments’.

Once Anderson made his discovery, it immediately lead to fundamental method-
ological questions: how can one trust a statistical estimate that has an infinite
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mean squared error (not to mention infinite bias)? Should these facts imply that
the estimate is totally unreliable? Why did not anybody notice these bad features
in practice? Can an estimate with infinite moments be practically better than
others which have finite moments? These questions lead to further studies, see
next.

In the late 1970s, Anderson [7, 8], Patefield [142], and Kunitomo [118] com-

pared the slope β̂ of the orthogonal fitting line, given by (1.16), with the slope β̂
of the classical regression line, given by (1.3) (of course, both estimates were used
in the framework of the same model (1.9), (1.10), and (1.11)). They denote the

former by β̂M (Maximum likelihood) and the latter by β̂L (Least squares). Their
results can be summarized in two seemingly conflicting verdicts:

(a) The mean squared error of β̂M is infinite, and that of β̂L is finite (when-

ever n ≥ 4), thus β̂L appears (infinitely!) more accurate;

(b) The estimate β̂M is consistent and asymptotically unbiased, while β̂L

is inconsistent and asymptotically biased (it is consistent and unbiased

only in the special case β = 0), thus β̂M appears more appropriate.

Going further, Anderson shows that

Prob
{
|β̂M − β| > t

}
< Prob

{
|β̂L − β| > t

}
for all t > 0 that are not too large, i.e. for all t > 0 of practical interest. In other
words, the accuracy of β̂M dominates that of β̂L everywhere, except for very large
deviations (large t). It is the heavy tails of β̂M that make its mean squared error

infinite, otherwise it tends to be closer to β than its rival β̂L.

σ=2.4

1 2 109

Figure 1.7. The true points location and the noise level in our experiment.

Furthermore, when one observes values of β̂M in practice, or in simulated
experiments, nothing indicates that β̂M has infinite moments; its values group
around a certain center and have a seemingly normal distribution. Large devia-
tions occur so rarely that they usually pass unregistered. However, those large
deviations are, ultimately, responsible for the lack of moments. In order to make
them visible, i.e. have them appear at a noticeable rate in computer experiments,



18 1. INTRODUCTION AND HISTORIC OVERVIEW

one needs to increase the noise level σ = σx = σy way above what it normally is
in image processing applications, see next.

For example, we generated 106 random samples of n = 10 points on the line
y = x whose true positions were equally spaced on a stretch of length 10, with
σ = 2.4 (note how high the noise is: its standard deviation is a quarter of the
length of the interval where the data are observed; see Figure 1.7). Figure 1.8

plots the average estimate β̂M over k samples, as k runs from 1 to 106. It behaves
very much like the sample mean of the Cauchy random variable (whose moments

do not exist either). Thus one can see, indeed, that the estimate β̂M has infinite
moments. But if one decreases the noise level to σ = 2 or less, then the erratic
behavior disappears, and the solid line in Figure 1.8 turns just flat, as it is for
the finite moment estimate β̂L.

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

runs

es
tim

at
ed

 s
lo

pe

Figure 1.8. The average estimate β̂M over k randomly generated
samples (blue solid line), as k runs from 1 to 106. The true slope

β = 1 is marked by the red dashed line. The average estimate β̂L is
the green dotted line, it remains stable at level 0.52, systematically
underestimating β.

Now which estimate, β̂M or β̂L, should we prefer? This may be quite a dilemma
for a practitioner who is used to trust the mean squared error as an absolute and
ultimate criterion. Anderson argues that in this situational one has to make an
exception and choose β̂M over β̂L, despite its infinite mean squared error.

In the early 1980s, as if responding to Anderson’s appeal, several statisticians
(most notably, Gleser [73, 74, 75], Malinvaud [128], and Patefield [143]) inde-
pendently established strong asymptotic properties of the orthogonal fitting line
(and more generally, the classical EIV fitting line):
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(a) the estimates α̂ and β̂ are strongly consistent2 and asymptotically nor-
mal;

(b) in a certain sense, these estimates are efficient.

They also constructed confidence regions for α and β. More details can be found
in [66], [40], [128], and our Chapter 2.

These results assert very firmly that the maximum likelihood estimate β̂M is
the best possible. Certain formal statements to this extend were published by
Gleser [74], see also [39, 40, 128] and our Chapter 2.

After all these magnificent achievements, the studies of the linear EIV regres-
sion seem to have subsided in the late 1990s, perhaps the topic exhausted itself.
The statistical community turned its attention to nonlinear EIV models.

For further reading on the linear EIV regression, see excellent surveys in
[8, 73, 126, 127, 132, 187], and books [66], [40], [128] (Chapter 10), and [111]
(Chapter 29). We give a summary of the orthogonal line fitting in Chapter 2.

1.7. Relation to total least squares (TLS)

The EIV linear regression is often associated with the so called total least
squares (TLS) techniques in computational linear algebra. The latter solve an
overdetermined linear system

(1.26) Ax ≈ b, x ∈ Rm, b ∈ Rn, n > m,

where not only the vector b, but also the matrix A (or at least some of its
columns) are assumed to be contaminated by errors. If only b is corrupted by
noise, the solution of (1.26) is given by the ordinary least squares

x = argmin ‖Ax− b‖2,

where ‖ · ‖ denotes the 2-norm. Equivalently, it can be paraphrased by

(1.27) x = argmin ‖∆b‖2 subject to Ax = b + ∆b.

If A has full rank, the (unique) explicit solution is

x = (ATA)−1ATb.

If A is rank deficient, the solution is not unique anymore, and one usually picks
the minimum-norm solution

x = A−b,

2However, the maximum likelihood estimates of σ2
x and σ2

y are not consistent, in fact

σ̂2
x → 1

2 σ2
x and σ̂2

y → 1
2 σ2

y

as n → ∞, in the functional model. This odd feature was noticed and explained in 1947 by
Lindley [126]; the factor 1/2 here is related to the degrees of freedom: we deal with 2n random
observations and n+2 parameters of the model, thus the correct number of degrees of freedom
is n− 2, rather than 2n− 2.
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where A− denotes the Moore-Penrose pseudoinverse.
If both b and A are corrupted by noise, the solution of (1.26) is more com-

plicated, and it is the subject of the TLS techniques. In the simplest case, where
all errors in A and b are independent and have the same order of magnitude, the
solution is given by

(1.28) x = argmin
∥∥[∆A ∆b]

∥∥2

F
subject to (A + ∆A)x = b + ∆b,

where [∆A ∆b] denotes the ‘augmented’ n × (m + 1) matrix and ‖ · ‖F stands
for the Frobenius norm (the “length” of the [n(m+1)]-dimensional vector). Note
the similarities between (1.27) and (1.28).

To compute x from (1.28), one uses the singular values (and vectors) of the
augmented matrix [A b]. In the basic case, see Chapter 2 of [185], it is given by

x = (ATA− σ2
m+1I)

−1ATb,

where σm+1 is the smallest singular value of [A b], and I denotes the identity
matrix. This is the TLS in the ‘nutshell’; we refer to [77, 185, 160, 161] for an
extensive treatment.

To see how the EIV and TLS models are related, consider an EIV problem
of fitting a line y = a + bx to data points (xi, yi), i = 1, . . . , n. This problem is
equivalent to (1.26) with

A =

 1 x1
...

...
1 xn

 , x =

[
a
b

]
, b =

 y1
...

yn

 .

We see that the vector b and the second column of A are corrupted by noise,
thus we arrive at a particular TLS problem. If the errors in xi’s and yi’s are
independent and have the same variance, then we can solve it by (1.28), and this
solution is equivalent to the orthogonal least squares fit.

The link between the EIV regression models and the TLS techniques of com-
putational linear algebra is very helpful. Many efficient tools of the TLS (espe-
cially, the SVD) can be employed to solve linear (or nonlinear but linearized) EIV
problems, see [185, 160, 161].

1.8. Nonlinear models: general overview

...the errors in variables are bad enough in linear models.
They are likely to be disastrous to any attempts to estimate
additional nonlinearity or curvature parameters...

Z. Griliches and V. Ringstad; see [79]

Fitting a straight line to observed points may appear as a ‘linear’ regression
problem, but it has a truly nonlinear character (Section 1.5). Its solution is given
by an irrational formula (1.16), and it may not be unique (Section 2.2). The
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probability distributions of the resulting estimates do not belong to any standard
family and are described by overly complicated expressions (Section 2.4). The
estimates do not have moments, i.e. their bias is indeterminate and their mean
square errors are infinite. One might just wonder if things could get any worse...

Sadly, things do get worse when one has to fit nonlinear functions to data with
errors in variables. We only overview some new troubles here. First of all, the
nonlinear fitting problem may not even have a solution. More precisely, if one fits
a curve of a certain type (say, a circle) by minimizing the orthogonal distances
to the data points, then such a curve may not exist; we will see examples in
Section 3.3. The non-existence is a phenomenon specific to nonlinear problems
only. Next, even if the best fitting curve exists, it may not be unique, there may
be multiple solutions, all of which are ‘equally good’; see examples in Section 3.5.
This leads to confusion in theoretical analysis.

Furthermore, even when the best fit exists and is unique, nothing is known
about the distribution of the resulting parameter estimates, there are no explicit
formulas for their densities or moments. In fact, theoretical moments quite often
fail to exist. This happens even in the linear case, see Section 1.6. For the prob-
lem of fitting circles, see Section 6.4. The non-existence of moments appears to
be a common feature of the EIV regression and orthogonal fitting problems. To
resolve these difficulties, statisticians have developed a non-traditional error anal-
ysis based on approximating distributions. We devote almost entire Chapter 6
to those new statistical theories.

F

x

initial
guess

Figure 1.9. Two algorithms minimizing a function F (x). One
makes shorter steps and converges to a local minimum. The other
makes longer steps and converges to the global minimum.

Down to more practical issues, the estimates of parameters in nonlinear EIV
regression cannot be found in closed form, by explicit formulas like (1.16). They
can only be computed by numerical algorithms, i.e. approximately. Numerical
schemes, at best, converge to the desired estimate iteratively. However, in prac-
tice, the iterations may very well diverge, and even if they do converge, one never
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knows if they arrive at the desired estimate (the procedure may just terminate
at a local minimum of the objective function; see Figure 1.9).

Quite often different numerical algorithms return different estimates. Fig-
ure 1.9 shows an example where an iterative procedure is trapped by a local
minimum. Another example is shown in Figure 1.10: there is no local minima,
but the second (slow) algorithm takes a large number of steps to reach the area
near the minimum. In computer programs the number of iterations is always
limited (usually, the limit is set to 50 or 100), thus the returned estimate may be
still far from the actual minimum.

The estimates returned by different algorithms may even have seemingly dif-
ferent statistical characteristics (bias, variance, etc.). Thus the choice of the
algorithm becomes a critical factor in practical applications, as well as in many
theoretical studies. There is simply little point of studying an abstract ‘solution’
that is not accessible in practice, while practical solutions heavily depend on the
particular algorithm used to compute them.

F

x

Figure 1.10. Two algorithms minimizing a function F (x) with a
unique minimum. One approaches it fast (from the left) and arrives
in a vicinity of the minimum in 5-10 steps. The other moves very
slowly (from the right); it may take 100 or 1000 iterations to get
near the minimum.

Thus the analysis of numerical schemes becomes an integral part of the re-
search. Sizable portions of published articles and books are now devoted to
computer algorithms, their underlying ideas, performance, limitations, numerical
stability, etc. This is all unavoidable, due to the nature of the subject.

1.9. Nonlinear models: EIV versus orthogonal fit

So far we have discussed two large topics—the orthogonal (geometric) fit and
the EIV regression (with the known ratio of variances)—in parallel. In the linear
context, these models can be transformed to one another by a simple scaling the
variables x and y (Section 1.4), and both models have very similar properties.

In the nonlinear context, a strong link between these two models is lost. They
can no longer be transformed to one another. The crucial disparity derives from



1.9. NONLINEAR MODELS: EIV VERSUS ORTHOGONAL FIT 23

the different requirements stated at the end of Section 1.4: the EIV regression
must be invariant under scaling of the variables x and y, and the orthogonal (geo-
metric) fit – under rotations and translations on the xy plane. These requirements
affect the very classes of nonlinear models used in each case.

For example, one may fit polynomials

(1.29) y = a0 + a1x + · · ·+ akx
k

to observed points, which is common in the EIV context [79, 140]. Scaling of
variables Sα,β, cf. Section 1.3, transforms one polynomial to another, so the class
of polynomial remains conveniently invariant.

R
y=g(x)

x

Figure 1.11. The graph of an explicit nonlinear function y = g(x)
(left). After rotation, the same curve (right) does not represent any
explicit function.

However, a rotation Rθ of the coordinate plane transforms a polynomial to
a different function; it becomes an implicit polynomial curve, which may not
even allow an explicit representation y = g(x). Thus explicit polynomials are
not suited for orthogonal (geometric) fitting. The same applies to any other
class of nonlinear explicit functions y = g(x): the graph of a nonlinear function
can always be rotated so that the resulting curve does not represent any explicit
functional relation; see Figure 1.11.

A natural class of models that remain invariant under rotations and transla-
tions consists of implicit polynomials of a ceratin degree k ≥ 1. Polynomials of
degree k = 1 are given by equation

(1.30) Ax + By + C = 0,

which represents all straight lines on the plane (including vertical and horizontal
lines). Polynomials of degree k = 2 are given by equation

(1.31) Ax2 + By2 + Cxy + Dx + Ey + F = 0,

which represents all conic sections: ellipses, hyperbolas, and parabolas, in addi-
tion to straight lines. This class is large enough to cover a vast majority of the
existing applications in computer vision and pattern recognition.
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Implicit polynomials of higher degree k ≥ 3 are occasionally used to describe
more complex objects, see examples in [150, 176] where polynomials of degree
k = 3, 4, and even k = 6, are mentioned. But the use of polynomials of degree
k ≥ 3 remains extremely rare, as most practitioners prefer to divide complex
shapes into small segments that can be well approximated by lines and arcs of
conics, or even arcs of circles. What one gets in the end is a sequence of circular
arcs stitched together (‘circular splines’); see [12, 145, 158, 164, 165]. Some
authors plainly assert that “most of the objects in the world are made up of
circular arc segments and straight lines”; see [146, 195].

Thus fitting circles and conics to observed data is practically the most impor-
tant task in image processing applications, besides fitting lines.

We note that often one deals with objects in images that have rectangular or
other polygonal shape, see e.g. [186, 189]. In that case a polygon of the right
shape can be fit to data. Polygon consists of segments of straight lines, so that
general line fitting algorithms can be used, but there are also vertices and corners
that may require a special treatment. Such problems are not discussed in this
manual.

To summarize, we see that in the nonlinear context, the two large topics, (i)
the EIV regression used in general statistics and (ii) the geometric fit used in
image processing, go separate ways and become very different. There is another
significant distinction here: these topics adopt different asymptotic models. In
the general EIV regression, it is common to study properties of estimators as the
sample size grows, i.e. as n → ∞ (at the same time the noise level σ remains
constant). In the image processing applications, the sample size is usually very
limited, but the noise is quite small, hence a more appropriate asymptotic model
is σ → 0 while n is fixed. This issue will be discussed at length in Section 2.5.

We reiterate that our main subject is geometric curve fitting in image pro-
cessing, i.e. the topic (ii) above. For a comprehensive presentation of the topic
(i), i.e. the general nonlinear EIV regression, see a recent book [27] and its second
edition [28], updated and expanded.



CHAPTER 2

Fitting lines

The problem of fitting a straight line to observed points by minimizing or-
thogonal distances has been around since late 1800s, and now all its aspects are
well understood and documented in the statistics literature. We gave a historic
overview in the previous chapter. Here we give a brief summary of the solution
to this problem and its main features.

2.1. Parametrization

First we need to describe a line in the xy plane by an equation, and there are
a few choices here.

Two parameters (slope and intercept). Until late 1980s, nearly every
paper and book dealing with the problem of fitting lines used the equation y =
a+ bx. It is simple enough, and it represents all possible linear relations between
x and y, which is indeed the goal in many applications. But this equation fails
to describe all geometric lines in the plane: vertical lines (x = const) are left
unaccounted for.

Besides, lines which are nearly vertical involve arbitrarily large values of b,
and this is hazardous in numerical computation. (The issue of numerical stability
may not have been noteworthy before 1980s, but it is definitely vital in today’s
computerized world.)

Lastly, as we mentioned in Section 1.6, the estimates of a and b have infi-
nite mean values and infinite variances; which makes it difficult to analyze their
statistical behavior.

Three algebraic parameters. These are compelling reasons to use an al-
ternative equation of a line:

(2.1) Ax + By + C = 0.

An additional restriction A2 + B2 > 0 must be applied, as otherwise A = B = 0
and (2.1) would describe an empty set if C 6= 0, or the entire plane if C = 0.

Equation (2.1) represents all geometric lines in the plane, including vertical
(B = 0) and horizontal (A = 0). Also, it allows us to keep the values A, B,
C bounded, as we will prove in the next section. This also ensures finiteness of

25
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the moments of the estimates of the parameters, and helps to secure numerical
stability in practical computations.

Constraints. A little problem is a multiple representation: each line corre-
sponds to infinitely many parameter vectors (A, B, C), which are, obviously, all
proportional to each other. This multiplicity can be eliminated by imposing a
constraint

(2.2) A2 + B2 + C2 = 1,

or another constraint

(2.3) A2 + B2 = 1.

The former is used, e.g., in [93, 95], and the latter in [83, 143]. The constraint
(2.3) is a bit better, as it automatically enforces the restriction A2 + B2 > 0, see
above. Besides, it allows clear geometric interpretation of the parameter values,
see next. So we use (2.3) in what follows.

Parameter space. Due to (2.3), A and B can be replaced by a single
parameter ϕ so that A = cos ϕ and B = sin ϕ, with 0 ≤ ϕ < 2π. Note that ϕ is a
cyclic parameter, i.e. its domain is the unit circle S1. Now a line can be described
by

(2.4) x cos ϕ + y sin ϕ + C = 0

with two parameters, ϕ ∈ S1 and C ∈ R1. Observe that ϕ is the direction of the
normal vector to the line. The parameter space {(ϕ, C)} is an infinite cylinder,
S1 × R1.

C

φ

Line
y

x

Figure 2.1. Parameters ϕ and C of a straight line.

An attentive reader shall notice that each geometric line is still represented by
more than one parameter vector: there are exactly two vectors (ϕ, C) for every
line; one is obtained from the other by transforming C 7→ −C and ϕ 7→ ϕ + π
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(mod 2π). This ambiguity can be eliminated by requiring C ≥ 0; then C will
be the distance from the origin to the line, see Figure 2.1. The parameter space
will be now a half-infinite cylinder, S1 × R1

+. In addition, two points (ϕ, 0) and
(ϕ + π, 0) for every ϕ ∈ [0, π) represent the same line, so they need to be be
identified as well.

Objective function. Now the orthogonal fitting line can be found by mini-
mizing the objective function

(2.5) F =
1

A2 + B2

n∑
i=1

(Axi + Byi + C)2

in the parametrization (2.1), without imposing the constraint (2.3), or

(2.6) F =
n∑

i=1

(xi cos ϕ + yi sin ϕ + C)2

in the parametrization (2.4).

2.2. Existence and uniqueness

Before we solve the above minimization problem in the new parameters, let us
divert our attention to two fundamental theoretical questions: Does the solution
always exist? Is it always unique?

Non-compactness of the parameter space. Our analysis here will involve
mathematical concepts of continuity and compactness, which we will engage also
in the next chapter to treat circles. The reader who is not so familiar with
topology may go straight to the next section for a practical solution of the least
squares problem, where the existence and uniqueness issues will be also resolved,
in a different way.

The function F given by (2.6) is obviously continuous on the corresponding
parameter space. It is known that continuous functions on compact spaces attain
their minimum (and maximum) values. If our parameter space were compact,
this would immediately guarantee the existence of the orthogonal fit. But the
parameter space is not compact, as C may take arbitrarily large values.

Direct geometric argument. We can also demonstrate the non-compactness
of the space of straight lines in a geometric manner, without referring to any
parametrization.

Let us denote by L the space of all lines in R2. First we need to introduce
the right topology on L. We say that a sequence of lines Li converges to a line L
in the plane R2 if for any closed disk D ⊂ R2 we have

(2.7) distH(Li ∩ D, L ∩ D) → 0 as i →∞
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where distH(·, ·) is the so-called Hausdorff distance between compact subsets of
R2. The latter is computed by the rule

(2.8) distH(E, F ) = max
{

max
x∈E

dist(x, F ), max
y∈F

dist(y, E)
}

,

where E, F ⊂ R2 are two compact sets.
Alternatively, one can compactify the plane R2 by mapping it onto the Rie-

mann sphere (see details in Section 8.1), so that every line is transformed to a
circle on the sphere (passing through the north pole), and then use the Haus-
dorff distance between the respective circles. Both constructions yield the same
topology, which coincides with the topology induced by the parameters ϕ, C (i.e.
a sequence of lines Li = (ϕi, Ci) converges to a line L = (ϕ, C) if and only if
ϕi → ϕ and Ci → C).

Now compact spaces are characterized by the property that every sequence
of its points contains a convergent subsequence. Hence one can demonstrate the
non-compactness of the space of lines by producing a sequence of lines which
has no convergent subsequences. To this end we can take, for example, lines
Li = {x = i}, where i = 1, 2, . . ..

Existence of a minimum. So everything tells us that our parameter space
is not compact; hence an additional argument is needed to show the existence of
the minimum of the objective function. We do this in two steps: first we reduce
the space L to a smaller space L0, which is compact; second, we show that

inf
L0

F ≤ inf
L
F ,

thus we can restrict our search of the minimum of F to the subspace L0.
Since the set of data points (xi, yi) is finite, we can enclose them in some rec-

tangle B (a ‘bounding box’). In many experiments, all data points are naturally
confined to a window corresponding to the physical size of the measuring device,
so the box B may be known in advance, before the data are collected.

Now if a line L does not cross the box B, it cannot provide a minimum of F ,
see Figure 2.2. Indeed, one can just move L closer to the box and thus reduce all
the distances from the data points to the line. So we denote by L0 the space of
all lines crossing the box B and restrict our search of the minimum of F to L0.

Recall that C represents the distance from the line to the origin. Since every
line L ∈ L0 crosses the box B, we have a restriction C ≤ Cmax where Cmax is the
distance from the origin to the most remote point of B. Thus the reduced space
L0 is indeed compact.

Theorem 2.1. The objective function F does attain its minimum value. Hence
the orthogonal fitting line always exists.

Remark 2.2. Our analysis also demonstrates that if one works with parameters A, B,
C subject to the constraint A2 + B2 = 1, then |A|, |B| ≤ 1 and |C| ≤ Cmax. Thus our
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B

L

Figure 2.2. A line L not crossing the bounding box B.

parameters never have to exceed the larger of Cmax and 1, i.e. the parameters remain
bounded, and there is no danger of running into arbitrarily large parameter values
during computations; this is a necessary condition for the numerical stability of any
algorithm.

Non-uniqueness. Lastly we address the uniqueness issue. While for typical
data sets (see precise statement in Section 2.3), the orthogonal regression line is
unique, there are exceptions. To give a simple example, suppose that n > 2 data
points are placed at the vertices of a regular n-gon, P. We show that there are
more than one line that minimizes F .

Suppose L is (one of) the orthogonal regression line(s). Let R = R2π/n denote
the rotation of the plane through the angle 2π/n about the center of the polygon
P. Since R transforms P into itself, the line R(L) provides exactly the same value
of F as the line L, hence R(L) is another least squares line, different from L.

In Section 2.3 we present exact condition under which the orthogonal regres-
sion line is not unique; we will also see that whenever that line is not unique,
there are actually infinitely many of them.

Practical implications. One last remark for an impatient reader who might
see little value in our theoretical discussion: the existence and uniqueness of a
solution are practically relevant. For example, knowing under what conditions
the problem does not have a solution might help understand why the computer
program occasionally returns nonsense or crashes altogether.

To illustrate the practical role of the non-uniqueness consider an example in
Figure 2.3. The best line fitted to four points

(
±(1 + δ),±1

)
, marked by pluses,

is a horizontal line (the x axis). On the other hand, the best line fitted to four
nearby points

(
±(1 − δ),±1

)
, marked by crosses, is a vertical line (the y axis).

Here δ may be arbitrarily small.
We see that a slight perturbation of the data points may result in a dramatic

alteration of the best fitting line (here it is rotated by 90o). This occurs exactly
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Figure 2.3. A horizontal solid line fitted to four points (pluses)
and a vertical dashed line fitted to four other points (crosses).

because our data lie very closely to an exceptional configuration (the vertices of
a perfect square) that corresponds to a multiple solution of the fitting problem.

2.3. Matrix solution

Here we find the minimum of the objective function F given by (2.5) in terms
of the three parameters A, B, C. We use methods of linear algebra; our formulas
may look more complicated than the elementary solution (1.16), but they have
several advantages: (i) they are more stable numerically; (ii) they work in any case
(with no exceptions); (iii) they are convenient for the subsequent error analysis.

Elimination of C. Recall that we are minimizing the function

(2.9) F(A, B, C) =
n∑

i=1

(Axi + Byi + C)2

subject to the constraint A2 + B2 = 1, cf. (2.3). Since the parameter C is
unconstrained, we can eliminate it by minimizing (2.9) with respect to C while
holding A and B fixed. Solving the equation ∂F/∂C = 0 gives us

(2.10) C = −Ax̄−Bȳ,

where x̄ and ȳ are the sample means introduced in (1.4). In particular, we see
that the orthogonal fitting line always passes through the centroid (x̄, ȳ) of the
data set.
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Eigenvalue problem. Eliminating C from (2.9) gives

F(A, B) =
n∑

i=1

[
A(xi − x̄) + B(yi − ȳ)

]2

= sxxA
2 + 2sxyAB + syyB

2,(2.11)

where sxx, sxy, and syy are the components of the scatter matrix S introduced in
(1.5). In matrix form,

(2.12) F(A) = ATSA,

where A = (A, B)T denotes the parameter vector. Minimizing (2.12) subject to
the constraint ‖A‖ = 1 is a simple problem of the matrix algebra: its solution is
the eigenvector of the scatter matrix S corresponding to the smaller eigenvalue.

Observe that the parameter vector A is orthogonal to the line (2.1), thus the
line itself is parallel to the other eigenvector. In addition, it passes through the
centroid, hence it is the major axis of the scattering ellipse.

Practical algorithms. If one uses software with built-in matrix algebra
operations, one can just assemble the scatter matrix S and call a routine returning
its eigenvalues and eigenvectors: this gives A; then one computes C via (2.10).
The scatter matrix S may be found as the product S = XTX, where

(2.13) X =

 x1 − x̄ y1 − ȳ
...

...
xn − x̄ yn − ȳ


is the n× 2 ‘data matrix’.

Alternatively, note that the eigenvectors of S coincide with the right singular
vectors of X. Thus one can use the singular value decomposition (SVD) of X to
find A; this procedure bypasses the evaluation of the scatter matrix S altogether
and makes computations more stable numerically.

Other parameters. Another parameter of interest is ϕ, the angle between
the normal to the fitting line and the x axis, cf. (2.4); it can be computed by

ϕ = tan−1(B/A).

The directional angle θ of the line itself is obtained by

θ = ϕ + π/2 (mod π).

Exceptional cases. For typical data sets, the above procedure leads to a
unique orthogonal fitting line. But there are some exceptions.

If the two eigenvalues of S coincide, then every vector A ∈ R2 is its eigenvector
and the function F(A, B) is actually constant. In that case all the lines passing



32 2. FITTING LINES

through the centroid of the data minimize F ; hence the problem has multiple
(infinitely many) solutions. This happens exactly if S is a scalar matrix, i.e.

(2.14) sxx = syy and sxy = 0.

One example, mentioned in the previous section, is the set of vertices of a regular
polygon.

Thus the orthogonal regression line is not unique if and only if both equations
in (2.14) hold. Obviously, this is a very unlikely event. If data points are sampled
randomly from a continuous probability distribution, then indeed (2.14) occurs
with probability zero. However, if the data points are obtained from a digital
image (say, they are pixels on a computer screen), then the chance of having (2.14)
may no longer be negligible and may have to be reckoned with. For instance, a
simple configuration of 4 pixels making a 2 × 2 square satisfies (2.14), and thus
the orthogonal fitting line is not uniquely defined.

Another interesting exception occurs when the matrix S is singular. In that
case 0 is its eigenvalue, and so F(A, B) = 0, which means a ‘perfect fit’, or
‘interpolation’ (the data points are collinear). Thus we see that the criterion of
collinearity is

det S = sxxsyy − s2
xy = 0.

2.4. Error analysis: exact results

No statistical estimation is complete without error analysis, whose main pur-
pose is to determine the probability distribution and basic characteristics (such
as the mean value and variance) of the respective estimators.

Linear functional model. In order to analyze our estimators Â, B̂, Ĉ, and
θ̂, we need to adopt a statistical model. We recall the one described in Section 1.2.
Namely, we suppose there is a true (but unknown) line

Ãx + B̃y + C̃ = 0

with Ã2 + B̃2 = 1 and n true (but unknown) points (x̃1, ỹ1), . . . (x̃n, ỹn) on it.
Since the true points lie on the true line, we have

(2.15) Ãx̃i + B̃ỹi + C̃ = 0, i = 1, . . . , n.

Each observed point (xi, yi) is as a random perturbation of the true point (x̃i, ỹi)
by a random isotropic Gaussian noise, i.e.

xi = x̃i + δi, yi = ỹi + εi,

where δi and εi are independent random variables with normal distribution N(0, σ2).
The value of σ2 is not needed for the estimation of A, B, C, and θ.
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The true values x̃i, ỹi are regarded as fixed (non-random), and therefore must
be treated as additional model parameters. They are called ‘incidental’ or ‘la-
tent’ parameters (or ‘nuisance’ parameters, as their values are normally of little
interest). This constitutes the functional model, cf. Section 1.2.

Distribution of the scatter matrix. These are, perhaps, the simplest
possible assumptions in the context of the orthogonal fit. Still, under these
assumptions the distribution of the estimates of the regression parameters is
overly complicated. Without going into the depth of statistical analysis, we will
only take a glimpse at some formulas.

For example, the components sxx, syy, and sxy of the scatter matrix S have
the noncentral Wishart distribution with joint density function

(2.16)
e−S/2e−(sxx+syy)/2(sxxsyy − s2

xy)
(n−3)/2

2n π1/2Γ
(

n−1
2

) ∞∑
j=0

[(
S
2

)2
sxx

]j

j! Γ
(

n
2

+ j
) ,

in the region sxx > 0, syy > 0, and s2
xy < sxxsyy; see, e.g., [10]. In this expression,

it is assumed, for simplicity, that the true line is horizontal and passes through
the origin (i.e. Ã = C̃ = 0) and σ2 = 1. The density for general lines and σ > 0
can be obtained by a standard coordinate transformation.

The parameter S of the above distribution is defined by

S = sx̃x̃ + sỹỹ

=
n∑

i=1

x̃2
i − 1

n

[ n∑
i=1

x̃i

]2

+
n∑

i=1

ỹ2
i − 1

n

[ n∑
i=1

ỹi

]2

.(2.17)

It characterizes the ‘spread’ of the true points (x̃i, ỹi) about their centroid. In
fact, S is the sum of squares of the distances from the true points to their centroid.
Note that S remains invariant under translations and rotations of the coordinate
frame on the plane.

Estimation of θ. Next we turn our attention to the estimator θ̂ and make
two important observations, following Anderson [7]. First, the distribution of

θ̂ − θ̃ does not depend on θ̃ (the true value of θ). Indeed, the model and the
orthogonal fitting line are invariant under rotations, so we can rotate the line to
achieve θ̃ = 0.

The other important observation is that the difference θ̂ − θ̃ has distribution
symmetric about zero, i.e.

(2.18) Prob{θ̂ − θ̃ > t} = Prob{θ̂ − θ̃ < t}
for every t ∈ (0, π/2) (recall that θ is a cyclic parameter). Indeed, we can assume

that θ̃ = 0, see above. Now positive and negative values of the errors δi are
equally likely, hence θ̂ is symmetric about zero.
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Remark 2.3. As an immediate consequence, we see that the estimator θ̂ is unbiased,
i.e. E(θ̂) = θ̃.

Now the density function of the estimator θ̂ can be obtained by using (2.16)
via the transformation (1.17). The final expression for that density is

e−S/2

2n−1
√

π

∞∑
j=0

Γ(n + j)

Γ
(

n
2

+ j
) (

S

4

)j j∑
i=0

Γ
[

i
2

+ 1
]
cosi 2(θ̂ − θ̃)

Γ
[

n+1+i
2

]
i!(j − i)!

,

where it is again assumed, for simplicity, that σ2 = 1. This density formula for θ̂
is obtained in the 1970s by Anderson and others [7, 10].

Other estimates. Now one can easily derive the densities of the estimates
Â = cos θ̂ and B̂ = sin θ̂ and the slope β = −A/B, they will be given by similar
expressions. We do not provide them here because (as Anderson [7] remarked)
they are not very useful for practical purposes.

Instead, Anderson [7] and Kunitomo [118] derive various asymptotic formulas

for the distribution functions of the estimates θ̂ and β̂. Those asymptotic expres-
sions were accurate enough to allow Anderson and others to obtain (rigorously)

asymptotic formulas for the variance of θ̂ (recall that β̂ has infinite moments, cf.
Section 1.6). Also, Patefield [142] verified numerically how good those approxi-
mative formulas are, and under what conditions they cease to be valid.

We present those asymptotic results in Section 2.6. We start by introducing
various asymptotic models popular in the EIV regression analysis.

2.5. Asymptotic models: large n versus small σ

The choice of an asymptotic model is an interesting issue itself in regression
analysis, especially in the context of the functional model.

Traditional (large sample) approach. It is common in statistics to study
asymptotic properties of estimators as the sample size grows, i.e. as n → ∞. In
the functional model, however, there is an obvious difficulty with this approach:
increasing n requires introduction of more and more ‘true’ points (x̃i, ỹi), thus
increasing the number of parameters of the model (recall that the true points are
regarded as ‘latent’ parameters).

The asymptotic behavior of the estimates might then depend on where those
new points are placed, so certain assumptions on the asymptotic structure of the
true points are necessary. For example, if the true points tend to cluster near a
certain center, parameter estimates may have very poor asymptotic properties as
n →∞.

Furthermore, general statistical theorems that guarantee good asymptotical
properties of maximum likelihood estimators (MLE), as n → ∞, will not apply
in this case, because these theories are not valid when the number of parameters
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changes with n. Therefore, the properties of the MLE must be investigated by
non-traditional methods.

Non-traditional (small noise) approach. Some statisticians prefer a dif-
ferent asymptotic model in regression analysis with latent parameters. They keep
the number of true points, n, fixed but consider the limit σ → 0. This is called
the small-sigma (or small-disturbance) approach introduced in the early 1970s by
Kadane [91, 92] and later used by Anderson [7] and others1. This model does
not require extra assumptions, though the asymptotic properties of the estimators
may again depend on the (fixed) locations of the true points.

Comparative analysis. Each asymptotic model has advantages and dis-
advantages. The classical model, where n → ∞ but σ is fixed, is perhaps more
appropriate for applications in econometrics and sociology, where the very nature
of statistical analysis consists of collecting and processing large samples of data,
and to increase the accuracy one collects more data. At the same each individual
observation (such as the income of a family or the price of a house) may not fit
the ideal model very well, and there is no way to make all (or most of) deviations
from the model small.

The other assumption, where n is fixed but σ → 0, is more appropriate for
image processing applications. Given an image, there is a limited number of
points that can be read (scanned) from it. One might suggest that using higher
resolution produces more data points, but this is not true: increasing resolution
would just refine the existing data points, rather than produce new ones.

On the other hand, when points are marked on (or scanned from) an imper-
fect line or oval in an image, they are usually quite close to that line (or oval).
Deviations are normally caused by technical reasons (an imperfect photograph,
imprecise scanning), and improving technology allows one to reduce errors sub-
stantially, so the limiting assumption σ → 0 is quite reasonable. Large deviations
are regarded as abnormalities and often are eliminated by various methods (in-
cluding manual pre-processing).

An ardent advocate of the small-sigma model for image processing applica-
tions is Kanatani; we refer the reader to his well written articles [97, 98, 99].

A ‘hybrid’ model. Some authors combine the above two models and assume
that

(2.19) n →∞ and σ → 0

1Anderson [7] remarks that his small-sigma model is equivalent to the one where both n
and σ > 0 are held fixed, but instead one homotetically expands the set of the true points on the
line. While not quite realistic, this picture caught imagination and was termed ‘a fascinating
new concept of asymptotic theory’, see the discussion after [7], as well as [118].
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simultaneously. This is in fact a very strong assumption which allows one to
derive the desired asymptotic properties more easily. Such ‘hybrid’ models have
been studied by Amemiya, Fuller and Wolter [5, 192] in the context of non-linear
regression. In the linear case, we can do without them. We note that a somewhat
simplified version of the above hybrid model will be involved in our statistical
error analysis of Chapter 6.

Terminology. Since our primarily motivation is geometric fitting in image
processing applications, the small-sigma model has a higher priority in our man-
ual. We call it Type A model. The classical (large n) asymptotics is called
Type B model (this terminology was also used by Patefield [142]):

Type A model: The true points are fixed and σ → 0. No additional as-
sumptions are necessary.

Type B model: The variance σ2 > 0 is fixed, but n → ∞. In addition we
assume that

lim
n→∞

1
n

S = s∗ > 0,

where S is the ‘spread’ of the true points defined by (2.17). This assumption
ensures that the line is ‘identifiable’.

If s∗ = 0, then the true points may ‘cluster’ too tightly near a common center,
and the parameter estimates may not even be consistent (see [76]). In the extreme
case S = 0, for example, the estimate of the slope is obviously independent of
the true slope.

2.6. Asymptotic properties of estimators

Theory. First we state two theorems describing the asymptotics of the esti-
mate θ̂ in the Type A and Type B models.

Theorem 2.4 ([7]). For Type A model, the estimate θ̂ is asymptotically normal,
and its limit distribution is described by

(2.20) σ−1(θ̂ − θ̃) →L N(0, S−1).

Its variance satisfies

(2.21) Var(θ̂) =
σ2

S

(
1 +

(n− 1)σ2

S

)
+O(σ6).

Theorem 2.5 ([73, 118, 143]). For Type B model, the estimate θ̂ is asymptot-
ically normal, and its limit distribution is described by

(2.22)
√

n (θ̂ − θ̃) →L N

(
0,

σ2

s∗

(
1 +

σ2

s∗

))
.
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Its variance satisfies

(2.23) Var(θ̂) =
σ2

ns∗

(
1 +

σ2

s∗

)
+O(n−3/2).

Recall that the estimate θ̂ is unbiased, i.e. E(θ̂) = θ̃, cf. Section 2.4.

Remark 2.6. In Type A model, the asymptotic normality (2.20) is ensured by the
assumed normal distribution of errors δi and εi. If errors have a different distribution,
then the asymptotic normality of θ̂ may be lost. In that case one can still derive an
asymptotic formula for Var(θ̂) similar to (2.21) assuming that the errors δi and εi have
finite moments of order four.

Remark 2.7. In Type B model, the asymptotic normality (2.22) follows, as usual, from
the central limit theorem, and one does not need to assume any specific distribution of
errors [73]. The formula (2.23) is derived under the assumption of normally distributed
errors, but perhaps that assumption can be relaxed.

Practical remark. A more pragmatic question is: which approximation to
Var(θ̂), (2.21) or (2.23), should one use in practice, where σ > 0 and n is finite?
Well, note that the leading terms in these formulas are identical and give a first
order approximation:

(2.24) Var1(θ̂) =
σ2

S
,

as we should obviously set s∗ = S/n. The second order terms are almost identical;
they differ only by the factor n−1 in (2.21) versus n in (2.23). Thus both formulas
give essentially the same result in practice, we record it as

(2.25) Var2(θ̂) =
σ2

S

(
1 +

(n− 1)σ2

S

)
.

Numerical test. We verified the accuracy of the approximations (2.24) and

(2.25) to Var(θ̂) numerically. We generated 106 random samples of n points
whose true positions on a line were equally spaced on a stretch of length L, i.e.
the distances between the points were L/(n−1). The noise level σ changed2 from
0 to 0.3L. We note that σ = 0.3L is a fairly large noise, beyond that value there
is little sense in fitting a line at all. Figure 2.4 shows how the ratios

r1 =
Var1(θ̂)

Var(θ̂)
and r2 =

Var2(θ̂)

Var(θ̂)

change with σ/L.

2Because of invariance under rotations and similarities, the results of our experiment do
not depend on the position of the true line in the plane or on the value of L.
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Figure 2.4. The ratios r1 (dashed line) and r2 (solid line), as
functions of σ/L. Here n = 10 (top) and n = 100 (bottom).

The top portion of Figure 2.4 is for n = 10 and the bottom for n = 100. We
see that, as n increases, the accuracy of the approximation (2.24) remains about
the same, but that of (2.25) noticeably improves, i.e. the ratio r2 gets closer to
one as n grows. No doubt, the factor n − 1 in the second order term is the ‘big
helper’ here.

Also note that the ratios r1 and r2 are always below 1, i.e. both approximations
(2.24) and (2.25) underestimate the true values of Var(θ̂). Perhaps the third
order expansion would do even better, but no formula for it is published in the
literature.

Taylor expansions. The asymptotic properties of the estimates Â, B̂, Ĉ, to
the leading order, can now be obtained easily from those of θ̂ by using a Taylor
approximation. We demonstrate this in the context of Type A model.
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First, A = sin θ and B = − cos θ, hence using Taylor expansion up to the
third order terms, we get

A = Ã− B̃ δθ − 1
2
Ã (δθ)2 +

1

6
B̃(δθ)3 +O

(
(δθ)4

)
B = B̃ + Ã δθ − 1

2
B̃ (δθ)2 − 1

6
Ã(δθ)3 +O

(
(δθ)4

)
.

Means and variances of Â and B̂. Taking mean values (recall that E(δθ) =
E(δθ)3 = 0) gives

E(Â) = Ã

[
1− σ2

2S

]
+O(σ4),

E(B̂) = B̃

[
1− σ2

2S

]
+O(σ4),

i.e. the estimates Â and B̂ are biased toward zero. Taking variances gives

Var Â =
σ2B̃2

S
+O(σ4),

Var B̂ =
σ2Ã2

S
+O(σ4),

Cov(Â, B̂) = −σ2ÃB̃

S
+O(σ4).

Note that the standard deviation of every estimate is O(σ), while its bias is
O(σ2); hence the bias is of higher order of smallness. In other words, the bias is
negligible when we, for instance, assess the mean squared error of an estimate,
say

MSE(Â) = E
[
(Â− Ã)2

]
= Var(Â) +

[
E(Â)− Ã

]2
=

σ2B̃2

S
+O(σ4),

so the bias is simply absorbed by the O(σ4) term.

Mean and variance of Ĉ. Lastly, by using Ĉ = −Âx̄− B̂ȳ one obtains

E(Ĉ) = C̃

[
1− σ2

2S

]
+O(σ4),

and

(2.26) Var Ĉ = σ2

[
1

n
+

(
Ã¯̃y − B̃ ¯̃x

)2

S

]
+O(σ4).

where

¯̃x =
n∑

i=1

x̃i and ¯̃y =
n∑

i=1

ỹi
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are the sample means of the true values. The extra term 1
n

in (2.26) comes from
the fact that x̄ and ȳ (the sample means of the observations) are random variables

correlated with Â and B̂.

Covariances. For the sake of completeness, we include three more covari-
ances

Cov(Â, Ĉ) =
σ2B̃

(
Ã¯̃y − B̃ ¯̃x

)
S

+O(σ4)

Cov(B̂, Ĉ) = −
σ2Ã

(
Ã¯̃y − B̃ ¯̃x

)
S

+O(σ4)

Cov(θ̂, Ĉ) = −
σ2

(
Ã¯̃y − B̃ ¯̃x

)
S

+O(σ4).

Practical remarks. In practice, the true values that appear in the above
formulas are not available. Normally, one makes further approximation replac-
ing the true points with the observed ones and the true parameter values with
their estimates (this does not alter the above expressions, the resulting errors are
absorbed by the O(σ4) terms). In the same fashion, one estimates S by

Ŝ = sxx + syy

and σ2 by

(2.27) σ̂2 =
1

n

n∑
i=1

(Âxi + B̂yi + Ĉ)2.

Gleser [73] and Patefield [143] show that all these estimates are strongly consis-
tent, thus their use in the construction of confidence intervals is justified.

2.7. Approximative analysis

Taylor approximation versus rigorous proofs. In the previous section,
we used Taylor expansion to derive formulas for the variances and covariances of
all important estimates based on the second order approximation (2.25) to the

variance Var(θ̂), whose proof was left ‘behind the scene’ (we simply referred to
the exact results by Anderson [7] and Kunitomo [118]).

In this section we derive (2.25) itself by Taylor approximation without using
the exact results. Thus we demonstrate that Taylor expansion, if properly used,
is a powerful (albeit not rigorous) tool, which allows one to obtain correct ap-
proximations even including higher order terms. This will help us in the studies
of non-linear regression later, in particular circles and ellipses.
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Matrix approximations. We use notation of Section 2.3 and focus on
perturbations δA = A − Ã, δS = S − S̃, etc., where the tilde is used to denote
the true values. The orthogonal fit minimizes

F(A) = ATSA = ATXTXA = (Ã + δA)T (X̃ + δX)T (X̃ + δX)(Ã + δA).

Expanding, using the fact X̃Ã = 0, which follows from (2.15), and keeping only
statistically significant terms3 gives

F(A) = ÃT δXT δXÃ + δAT X̃T X̃ δA + 2ÃT δXT X̃ δA + 2ÃT δXT δX δA.

Now the minimum of F is attained at ∂F/∂A = 0, i.e. at

X̃T X̃ δA + (X̃T δX + δXT δX)Ã = 0,

hence

(2.28) δA = −(X̃T X̃)−(X̃T δX + δXT δX)Ã,

where (X̃T X̃)− denotes the Moore-Penrose generalized inverse of the matrix X̃T X̃

(which is rank deficient because X̃Ã = 0).

A convenient assumption. Since the distribution of δθ = θ̂ − θ̃ does not
depend on θ̃ (Section 2.4), we can simplify our calculation by assuming that the

line is horizontal, i.e. Ã = (0, 1)T . Then δA = (δθ, 0)T , to the leading order, and

X̃T X̃ =

[
S 0
0 0

]
, hence (X̃T X̃)− =

[
1
S

0
0 0

]
.

The matrix δX is  δ1 − δ̄ ε1 − ε̄
...

...
δn − δ̄ εn − ε̄

 ,

where we continue using the sample mean notation, i.e. δ̄ =
∑n

i=1 δi, etc. Now
(2.28) takes form

δθ = − 1

S

n∑
i=1

(x̃i − ¯̃x)(εi − ε̄)− 1

S

n∑
i=1

(δi − δ̄)(εi − ε̄).

Using our assumptions on the errors δi and εi we easily compute that E(δθ) = 0
and

E
[ n∑

i=1

(x̃i − ¯̃x)(εi − ε̄)

]2

= σ2

n∑
i=1

(x̃i − ¯̃x)2 = σ2S,

E
[( n∑

i=1

(x̃i − ¯̃x)(εi − ε̄)
)( n∑

i=1

(δi − δ̄)(εi − ε̄)
)]

= 0,

3We drop the term δAT δXT δX δA, which is of order σ4 and 2δAT X̃T δX δA, which is of
order σ2/

√
n. We keep all the terms of order σ2 or σ3

√
n or higher.
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and

E
[ n∑

i=1

(δi − δ̄)(εi − ε̄)

]2

= (n− 1)σ4.

Summing up we arrive at (2.25).
Observe that our approximate analysis gives the correct asymptotic variance

of θ̂ for both Type A model, cf. (2.21), and Type B model, cf. (2.23).

Final remarks. In the above calculations we only used the following as-
sumptions on the errors δi and εi: they have mean zero, a common variance σ2,
and they are uncorrelated.

Our approach combines (and improves upon) the calculations made by Mal-
invaud, see pp. 399–402 in [128], who treated Type B model only, and Kanatani
[93, 105], who treated Type A model only.

2.8. Finite-size efficiency

In this last section we discuss the efficiency of the parameter estimators.
There are various approaches to this issue in the context of orthogonal (and more
generally, EIV) regression.

Two approaches. First, one can directly compute the classical Cramer-Rao
lower bound and compare it to the actual variances of the parameter estimators.
We do this below. As it happens, the maximum likelihood estimates are not
exactly optimal, but their efficiency is close to 100% in various senses.

Second, one may try to prove that the estimators are asymptotically efficient,
in the context of Type A model or Type B model. There are, indeed, general
results in this directions, we discuss them as well.

Cramer-Rao for finite samples. We start with the classical Cramer-Rao
lower bound; our analysis is an adaptation of [128] (pp. 402–403). We work in the
context of the functional model (Section 2.4) with n+2 independent parameters:
two principal parameters (θ and C) for the line and one ‘latent’ parameter per
each true point. We can describe the line by parametric equations

x = −C sin θ + t cos θ, y = C cos θ + t sin θ,

where t is a scalar parameter, and specify the coordinates of the true points by

x̃i = −C sin θ + ti cos θ, ỹi = C cos θ + ti sin θ.

Thus t1, . . . , tn play the role of the (latent) parameters of the model.
The log-likelihood function is

(2.29) ln L = const− 1

2σ2

n∑
i=1

(xi − x̃i)
2 + (yi − ỹi)

2.
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According to the classical Cramer-Rao theorem, the covariance matrix of the
parameter estimators is bounded below4 by

Cov(θ̂, Ĉ, t̂1, . . . , t̂n) ≥ F−1,

where F is the Fisher information matrix

F = −E(H)

and H denotes the Hessian matrix consisting of the second order partial deriva-
tives of ln L with respect to the parameters.

Computing the Cramer-Rao bound. Computing the second order partial
derivatives of (2.29) with respect to θ, C, t1, . . ., tn (which is a routine exercise)
and taking their expected values (by using the obvious rules E(xi) = x̃i and
E(yi) = ỹi) gives the following results (where we omit the common factor σ−2 for
brevity)

E
[∂2 ln L

∂θ2

]
= −

∑
t2i − nC2, E

[∂2 ln L

∂θ ∂C

]
= −

∑
ti, E

[∂2 ln L

∂θ ∂ti

]
= C,

E
[∂2 ln L

∂C ∂θ

]
= −

∑
ti, E

[∂2 ln L

∂C2

]
= −n, E

[∂2 ln L

∂C ∂ti

]
= 0,

E
[∂2 ln L

∂ti ∂θ

]
= C, E

[∂2 ln L

∂ti ∂C

]
= 0, E

[∂2 ln L

∂ti ∂tj

]
= −δij,

where δij denotes the Kronecker delta symbol. The Fisher information matrix
now has structure

F = σ−2

[
E GT

G In

]
,

where

E =

[ ∑
t2i + nC2

∑
ti∑

ti n

]
and

G =

 −C 0
...

...
−C 0


and In denotes the identity matrix of order n. By using the block matrix inversion
lemma (see, e.g., p. 26 in [128]) we obtain[

E GT

G In

]−1

=

[
(E−GTG)−1 −(E−GTG)−1GT

−G(E−GTG)−1 (In −GE−1GT )−1

]
.

(One can easily verify this formula by direct multiplication.)

4The inequality A ≥ B between two symmetric matrices is understood in the sense that
A−B is positive semi-definite, i.e. xT Ax ≥ xT Bx for every vector x.
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The 2 × 2 top left block of this matrix is the most interesting to us as it
corresponds to the principal parameters θ and C. This block is

(E−GTG)−1 =

[ ∑
t2i

∑
ti∑

ti n

]−1

=
1

nS

[
n −

∑
ti

−
∑

ti
∑

t2i

]
,

because the determinant here is

n
∑

t2i −
(∑

ti

)2

= nS.

Therefore, the Cramer-Rao lower bound on the covariance matrix of the estimates
of the principal parameters is

(2.30) Cov(θ̂, Ĉ) ≥ σ2

S

[
1 − 1

n

∑
ti

− 1
n

∑
ti

1
n

∑
t2i

]
.

In particular,

Var(θ̂) ≥ σ2

S

which is exactly our first order approximation (2.24) to the actual variance of θ̂.
In fact, all the components of the matrix (2.30) are equal to the leading terms of
the actual variances and covariances obtained in Section 2.6, because

1

n

∑
ti =

1

n

(
Ã

∑
ỹi − B̃

∑
x̃i

)
= Ã¯̃y − B̃ ¯̃x

and
1

n

∑
t2i =

S

n
+

1

n2

(∑
ti

)2

=
S

n
+ (Ã¯̃y − B̃ ¯̃x)2.

Concluding remarks. Our analysis shows that, to the leading order, the
estimators of θ and C are optimal. However, the more accurate second order
approximation (2.25) indicates that our estimates are not exactly optimal; in

particular the (approximate) efficiency of θ̂ is

(2.31)
(
1 +

(n− 1)σ2

S

)−1

.

This is close to one when the ratio (n− 1)σ2/S is small, i.e. when the deviations
of the data points from the line are small compared to their spread along the
line.

2.9. Asymptotic efficiency

Here we discuss the asymptotic efficiency of our estimates, in the context of
Type A model or Type B model.

In Type A model, as n is fixed and σ2 → 0, the efficiency (2.31) converges
to one. Thus our estimates are asymptotically efficient (optimal). In fact, the
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maximum likelihood estimates of regression parameters (linear or nonlinear) are
always asymptotically efficient in the context of Type A model, see Section 6.5.

In Type B model, where σ2 is fixed and n → ∞, our estimators are not
asymptotically efficient. For example, the efficiency of θ̂ converges to(

1 +
σ2

s∗

)−1

< 1.

On the other hand, in 1954 Wolfowitz proved [191], see also p. 403 in [128],
that in the context of Type B model there exists no estimator which has asymp-
totic efficiency equal to 1. We do not know if there exists any estimator with
asymptotic efficiency greater than that of θ̂.

Remark 2.8. There are general theorems in statistics stating that maximum likelihood
estimators are asymptotically efficient, as n → ∞. However, those theorems do not
apply to models where the number of parameters grows with n, and this is exactly the
case with Type B model here.

Statistical optimality by Gleser. Nonetheless, the maximum likelihood
estimators Â, B̂, and Ĉ of the parameters of the line are asymptotically optimal,
as n →∞, in the following restricted sense.

Consider an infinite sequence of true points (x̃i, ỹi) lying on the (unknown)
line Ãx + B̃y + C̃ = 0 such that

¯̃xn = 1
n

n∑
i=1

x̃i → x̄∗ and ¯̃yn = 1
n

n∑
i=1

ỹi → ȳ∗

in the manner satisfying

|¯̃xn − x̄∗| = o(n−1/2) and |¯̃yn − ȳ∗| = o(n−1/2)

and

1
n
Sn = 1

n

n∑
i=1

(x̃i − ¯̃xn)2 + 1
n

n∑
i=1

(ỹi − ¯̃yn)2 → s∗ > 0

in the manner satisfying
| 1
n
Sn − s∗| = o(n−1/2).

Now suppose we are estimating A, B, C from the noisy observation of the first n
points, and the noise level σ2 is unknown and we are estimating it, too. Denote
by Ân, B̂n, Ĉn, σ̂2

n the estimators of these parameters.

Let E denote the class of all estimators Ân, B̂n, Ĉn, σ̂2
n which are consistent

and asymptotically normal, with the asymptotic covariance matrix depending on
the sequence of the true points (x̃i, ỹi) only through their limit values x̄∗, ȳ∗,
and s∗. Then within E, the maximum likelihood estimators of A, B, C and the
estimator (2.27) of σ2 are the best estimators, i.e. they have the asymptotically
smallest possible covariance matrix.
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This remarkable result is due to Gleser [74, 75], see also Cheng and Van Ness
[38, 39, 40].

Final remarks. This concludes our brief summary of the orthogonal line
fitting. We have covered only selected aspects of this subject, which seemed
to be most relevant to our main objectives – fitting circles and ellipses. We
left out non-orthogonal EIV linear regression, multidimensional linear regression,
structural and ultra-structural models, and many other interesting but not quite
relevant topics.



CHAPTER 3

Fitting circles: theory

3.1. Introduction

Variety of applications. The need of fitting circles or circular arcs to ob-
served points arises in many areas. In medicine, one estimates the diameter of a
human iris on a photograph [141] or designs a dental arch from an X-ray [21].
Archaeologists examine the circular shape of ancient Greek stadia [157] and mys-
terious megalithic sites (stone rings) in Britain [65, 177]; in other studies they
determine the size of ancient pottery by analyzing potsherds found in field expe-
ditions [44, 80, 81, 190]. In industry, quality control requires estimation of the
radius and the center of manufactured mechanical parts [119] (other interesting
applications involve microwave engineering [54, 169] and lumber industry [13]).

In nuclear physics, one deals with elementary particles born in an accelerator
– they move along circular arcs in a constant magnetic field; physicists deter-
mine the energy of the particle by measuring the radius of its trajectory; to
this end experimenters fit an arc to the trace of the electrical signals the par-
ticle leaves in special detectors [53, 45, 106]. In mobile robotics, one detects
round objects (pillars, tree trunks) by analyzing range readings from a 2D laser
range finder used by a robot [197]. In computer vision, one uses a sequence of
arcs ‘stitched together’ (a ‘circular spline’) to approximate more complex curved
shapes [12, 145, 158, 164, 165].

Different practical requirements. All these applications involve fitting
circles to planar images, but the character of data and the requirements may
differ widely. In some cases one deals with data points sampled along a full circle
(like in a human iris image or a log in lumber industry). In other cases the data
are badly incomplete – one observes just a small arc of a big circle.

In some applications (e.g. in medicine) the fit must be very accurate and
the computational cost is not an issue. Others are characterized by mass data
processing (for instance, in high energy physics, millions of particle tracks per day
can be produced by an accelerator), and the processing speed is of paramount
importance. These variations certainly dictate different approaches to the fitting
problem, as we will see below.

47
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3.2. Parametrization

Standard parameters. To fit a circle to observed points {(xi, yi)} by or-
thogonal least squares one minimizes the sum of squares

(3.1) F =
n∑

i=1

d2
i ,

where di is the (geometric) distance from the data point (xi, yi) to the hypothet-
ical circle. The canonical equation of a circle is

(3.2) (x− a)2 + (y − b)2 = R2,

where (a, b) is its center and R its radius; then the (signed) distance is given by

(3.3) di =
√

(xi − a)2 + (yi − b)2 −R.

Note that di > 0 for points outside the circle and di < 0 inside it. Hence

(3.4) F(a, b, R) =
n∑

i=1

[√
(xi − a)2 + (yi − b)2 −R

]2
.

Elimination of R. This function is just a quadratic polynomial in R, hence
F has a unique global (conditional) minimum in R, when the other two variables
a and b are kept fixed. That conditional minimum can be easily found. If we
denote

(3.5) ri = ri(a, b) =
√

(xi − a)2 + (yi − b)2,

then the minimum of F with respect to R is attained at

(3.6) R̂ = r̄ =
1

n

n∑
i=1

ri.

This allows us to eliminate R and express F as a function of a and b only:

F(a, b) =
n∑

i=1

[
ri − r̄

]2

=
n∑

i=1

[√
(xi − a)2 + (yi − b)2 − 1

n

n∑
j=1

√
(xj − a)2 + (yj − b)2

]2

(3.7)

This is still a complicated expression, and it cannot be simplified any further. The
minimization of (3.7) is a nonlinear problem that has no closed form solution.

The little advantage of (3.7) over (3.4) is that a function of two variables,
F(a, b), can be easily graphed and examined visually (which we will do below),
while for a function F(a, b, R) such a visual inspection is difficult.
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Figure 3.1. Data points (diamonds) are sampled along a very
small arc of a big circle. The correct fit (the blue solid line) and
the wrong fit (the red dashed line) have centers on the opposite
sides of the data set.

In this chapter we discuss theoretical properties of the objective function
F and its minimum; in the next two chapters we present practical methods
of computing the minimum of F . Our first theme is the analysis of various
parametrization schemes used in circle fitting applications.

Drawbacks of the standard parameters. The geometric parameters
(a, b, R) of a circle are standard; they are simple and describe all circles in the
plane. There is a problem, however, if one fits circles of very large radii. This
may happen when the data are sampled along a small arc (of say less than 5
degrees), see Figure 3.1; then the radius of the fitted circle can potentially take
arbitrarily large values. In that case a small perturbation of data points or a
small inaccuracy of the fitting procedure may result in the circle center being on
the ‘wrong side’ (see the dashed arc in Figure 3.1).

In addition, numerical computations become unreliable: a catastrophic loss
of accuracy may occur when two large nearly equal quantities are subtracted
in (3.3). We call this a problematic, or a singular case of a circle fit. We will
see shortly that in this case even more serious problems arise than catastrophic
cancelations.

Karimäki’s parameters. If experiments where incomplete arcs (partially
occluded circles) are frequent, statisticians often adopt different parametrization
schemes. For example, in nuclear physics Karimäki [106] proposes to replace R
with a signed curvature ρ = ±R−1 and the center (a, b) with the distance of the
closest approach (d) to the origin, and the direction of propagation (ϕ) at the
point of closest approach, see Figure 3.2. We will describe these parameters more
precisely in Section 8.8. The three parameters (ρ, d, φ) completely (and uniquely)
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Figure 3.2. Karimäki’s parameters d and φ.

describe the fitting circular arc, and they never have to take dangerously large
values (unless R ≈ 0, hence ρ ≈ ∞, which is actually not a bothersome event).

Karimäki’s parameters have a clear geometric meaning, but expressing the
objective function F in terms of (ρ, d, φ) leads to cumbersome formulas; see
[106] and our Section 8.8. Another pitfall in Karimäki’s scheme is that for circles
centered on the origin, the direction φ becomes indeterminate. If the center of
the fitting circle gets close to the origin, numerical algorithms cannot handle the
φ parameter adequately and may get stuck.

Algebraic parameters. A more elegant scheme was proposed by Pratt [150]
and others [67], which describes circles by an algebraic equation,

(3.8) A(x2 + y2) + Bx + Cy + D = 0

with an obvious constraint A 6= 0 (otherwise this equation describes a line) and
a less obvious constraint

(3.9) B2 + C2 − 4AD > 0.

The necessity of the latter can be seen if one rewrites equation (3.8) as(
x +

B

2A

)2

+
(
y +

C

2A

)2

− B2 + C2 − 4AD

4A2
= 0.

It is clear now that if B2 + C2 − 4AD < 0, then (3.8) defines an empty set, and
if B2 + C2 − 4AD = 0, then (3.8) specifies a single point (a singleton).

Constraint. Since the parameters only need to be determined up to a scalar
multiple, we can impose some constraints. The constraint A = 1 brings us back
to the scheme (3.2). Some researchers try the constraint D = 1 or A2 + B2 +
C2 +D2 = 1 (see [67]) or A2 +B2 +C2 = 1 (see [137]). However, the best choice
is the constraint

(3.10) B2 + C2 − 4AD = 1,

because it automatically ensures (3.9). The constraint (3.10) was first proposed
by Pratt [150], who clearly described its advantages.
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The constraint eliminates the multiplicity of parametrization (A, B, C,D),
but not entirely: each circle is now represented by exactly two parameter vectors
(A, B, C,D), one being the negative of the other. If we additionally require that
A > 0, then every circle will correspond to a unique quadruple (A, B, C,D), and
vice versa.

Conversion between algebraic and geometric parameters. The con-
version formulas between the natural geometric parameters (a, b, R) and the al-
gebraic parameters (A, B, C,D) are

(3.11) a = − B

2A
, b = − C

2A
, R2 =

B2 + C2 − 4AD

4A2
,

or by using the constraint (3.10), R2 = (4A2)−1. Conversely,

(3.12) A = ± 1

2R
, B = −2Aa, C = −2Ab, D =

B2 + C2 − 1

4A
.

The distance from a data point (xi, yi) to the circle can be expressed, after some
algebraic manipulations, by

(3.13) di =
2Pi

1 +
√

1 + 4APi

,

where

(3.14) Pi = A(x2
i + y2

i ) + Bxi + Cyi + D.

One can check that

(3.15) 1 + 4APi =
(xi − a)2 + (yi − b)2

R2
,

hence 1+4APi ≥ 0 for all i, so that (3.13) is always computable. The denominator
is ≥ 1, thus the division is always safe (computationally).

The formula (3.13) is somewhat more complicated than (3.3), but it is nu-
merically stable as it conveniently avoids catastrophic cancelations.

Natural bounds on algebraic parameters. Lastly we show that (A, B, C,D),
just as Karimäki parameters (ρ, d, ϕ), never have to take arbitrarily large values
(under certain natural conditions). As in Section 2.2, let all the data points
(xi, yi) be enclosed in a rectangle B (a ‘bounding box’). In many experiments,
all data points are naturally confined to a window corresponding to the physical
size of the measuring device, so the box B may be known in advance, before the
data are collected. Also let

dmax = max
i,j

√
(xi − xj)2 + (yi − yj)2

denote the maximal distance between the data points.
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Theorem 3.1. The best fitting circle satisfies bounds

(3.16) |A| < Amax, |B| < Bmax, |C| < Cmax, |D| < Dmax

where Amax, Bmax, Cmax, Dmax are determined by the size and location of the
bounding box B and by dmax.

Thus whatever the configuration of the data points, the parameters (A, B, C,D)
of the fitted circle stay bounded.

Proof. Due to (3.6), the best fitting circle has radius R ≥ dmax/n, hence

|A| ≤ Amax = n/2dmax.

Let L denote the distance from the origin to the most remote point of B. Just like
in Section 2.2, it is easy to see that the the best fitting line or circle must cross
B, thus the distance from it to the origin is less than L. Substituting x = y = 0
into (3.13)–(3.14) gives

2|D|
1 +

√
1 + 4AD

≤ L.

Solving this inequality for D gives

|D| ≤ Dmax = 10AmaxL
2.

Lastly, (3.10) gives bounds on B and C with

Bmax = Cmax =
√

1 + 4AmaxDmax.

The theorem is proved. �

Remark 3.2. The restriction on dmax here is a just technicality, it is not of a critical
importance. If dmax is small, the data points cluster together, and in the limit dmax → 0
they merge into a single point. In this case the best fitting circle may have arbitrarily
small radius, so that A is unbounded, but practically such situations rarely occur and
do not cause serious trouble.

3.3. (Non)existence

As in the previous chapter, we turn to two fundamental theoretical questions:
Does the best fitting circle always exist? Is it always unique? Strangely enough,
these issues have not been discussed in the literature until recently. Only in
the early 2000s they have been resolved, independently, in [43, 138, 196]. The
answers to the above question happen to be far less straightforward than those
we found in the case of fitting lines.

Collinear data case. We begin with a rather unexpected fact: there are
data sets for which the best fitting circle does not exist! The simplest example
is a set of n ≥ 3 collinear data points. No circle can interpolate more than two
collinear points, so the function F in (3.1) is strictly positive for any (a, b, R).
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On the other hand, one can approximate the collinear points by a circular arc of
very large radius and make F arbitrarily small. Thus the function F does not
attain its minimum value. In practical terms, this means that for any circular
arc fitted to a set of collinear points one can find another arc that fits them even
better, and that process never stops.

Clearly, the best fit here is achieved by the line passing through all the data
points (for that line F = 0). This example suggests that if we want to fit circles
to observed points we should try lines as well! Then the best fit should be chosen
between all circles and lines, and the orthogonal least squares method may return
either a circle or a line depending on the data set (this statement is made precise
below).

Another example. Collinear points are not the only example where lines
‘beat’ circles. Consider four points: (X, 0), (−X, 0), (0, 1), (0,−1), with some
large X � 1. In this case the best fitting line (the x axis) provides F = 2, and
it can be easily seen that for any circular arc F > 2.

Practical remarks. Admittedly, such examples are quite rare. More pre-
cisely, if the data are sampled randomly from a continuous distribution, then the
probability that the orthogonal least squares method returns a line, rather than
a circle, is zero. This is a mathematical fact, it will be proved in Section 3.9, see
Theorem 3.6.

This fact explains why lines are often ignored in practice and one works with
circles only. On the other hand, if the data points are obtained from a digital
image (say, one fits circles to pixels on a computer screen), then lines may appear
with a positive probability and have really to be reckoned with.

Lines – into the model. To add lines to our search for the best fitting
circle we need to incorporate them into the parameter scheme. The natural circle
parameters (a, b, R), unfortunately do not include lines. Karimäki’s parameters
(ρ, d, ϕ) incorporate lines if one allows ρ = 0; then d and ϕ are the same as our C
and ϕ in equation (2.4). The algebraic parameter scheme (3.8) easily integrates
lines, too, by setting A = 0, then we recover the linear equation (2.1).

Non-compactness of the parameter space. Here we provide a rigorous
analysis involving the notion of compactness already employed in Section 2.2. We
follow [43], and a similar argument is given by Nievergelt, see page 260 in [138].

The function F is obviously continuous in the circle parameters a, b, R, but
the parameter space is not compact as a, b, R may take arbitrarily large values.
What is worse, the ‘reduced’ space of circles intersecting any given rectangle B
(‘bounding box’) is not compact either, so the remedy we used in the case of lines
(Section 2.2) will not save us anymore.
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B

Figure 3.3. Straightening a circular arc and shrinking a circle to a singleton.

Direct geometric argument. The non-compactness can be again demon-
strated geometrically if we introduce an appropriate topology on the space of
circles. Following the pattern of (2.7)–(2.8) we say that a sequence of circles Si

converges to a circle S (or more generally, to a closed set S) on the plane R2 if
for any closed disk D ⊂ R2 we have

(3.17) distH(Si ∩ D, S ∩ D) → 0 as i →∞

where distH(·, ·) is again the Hausdorff distance between compact subsets of R2,
see (2.8). Now let us take a circular arc crossing the given bounding box B and
straighten (flatten) it by fixing one of its points and the tangent line at that point,
and then increasing the radius steadily, the arc will converge to a straight line,
see Figure 3.3. Also, if one takes a sequence of concentric circles with decreasing
radii, they will shrink to a point. These constructions show that if we want
the space of circles crossing the box B be compact, we must include lines and
singletons in it.

Existence of a minimum. From now on we work with the enlarged space
containing all circles, lines, and singletons. On this space we define a topology
by the same rule (3.17), in which Si and S may denote either circles or lines or
singletons.

Theorem 3.3. Let B be a given bounding box containing all the data points.
Then the ‘enlarged’ space of circles, lines, and singletons intersecting B is com-
pact.

Proof. Let {Si} be a sequence of objects (circles, lines, singletons) that
intersect B. If there are infinitely many singletons in {Si}, then a subsequence of
those converges to a point in B because the latter is compact. If there are infinitely
many non-singletons, then each of them is represented by a vector (Ai, Bi, Ci, Di)
with Ai ≥ 0. The sequence {Ai} contains a subsequence that either converges to
a limit Ā < ∞ or diverges to infinity. In the latter case we have a sequence of
circles in B whose radii converge to zero, then they have a limit point in B just as
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singletons do, see above. If Ā = 0, then we have a sequence of arcs whose radii
grow to infinity, and it contains a subsequence converging to a line because the
space of lines crossing B is compact (Section 2.2). Lastly, if 0 < Ā < ∞, then
we have a sequence of circles crossing B whose radii converge to R̄ = 1/(2Ā).
Then their centers must stay within distance 2R̄ from the box B, hence there
is a subsequence of these circles whose centers converge to a limit point (a, b).
Therefore our subsequence converges to the circle (a, b, R̄). �

We remark that singletons need not really be involved, as they never provide
the minimum of the objective function F , unless all the data points collapse,
but even in that case any line or circle through that collapsed data point would
provide the best fit F = 0 anyway.

Next, again as in Section 2.2 suppose a circle S (or a line L) does not cross
the box B. Then it cannot provide a minimum of F , as one can just move S (or
L) closer to the box and thus reduce all the distances from the data points to S
(or L). So we can restrict our search of the minimum of F to the space of circles
and lines that intersect the bounding box B. Since it is compact we obtain

Theorem 3.4. The objective function F always attains its minimum, though it
may be attained either on a circle or on a line.

This resolves the existence issue in a satisfactory way.

3.4. Multivariate interpretation of circle fit

The conclusions of the previous section can be illustrated by a multidimen-
sional geometric construction similar to the one described in Section 1.5.

‘Megaspace’. Given n data points (x1, y1), . . . , (xn, yn), we can represent
them by one point (‘megapoint’) X in the 2n-dimensional space R2n with co-
ordinates x1, y1, . . . , xn, yn. Recall that the orthogonal line fit corresponds to
projecting the point X onto an (n + 2)-dimensional quadratic surface (manifold)
P ⊂ R2n.

We now interpret the orthogonal circle fit in a similar manner. Consider the
subset Q ⊂ R2n defined by

(x1, y1, . . . , xn, yn) ∈ Q ⇐⇒ ∃a, b, R : (xi − a)2 + (yi − b)2 = R2 ∀i,
i.e. Q consists of all (x1, y1, . . . , xn, yn) ∈ R2n such that the n planar points
(x1, y1), . . . , (xn, yn) lie on a circle (we call such points ‘co-circular’, which is
perhaps an unconventional term).

Projection in the megaspace. Now the best fitting circle minimizes the
sum

n∑
i=1

(xi − x̃i)
2 + (yi − ỹi)

2.
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where the points (x̃1, ỹ1), . . . , (x̃n, ỹn) are constrained to lie on one circle. There-
fore, the true values x̃1, ỹ1, . . . , x̃n, ỹn are represented by one megapoint (we
denote it by X̃ ) in Q. The orthogonal circle fitting procedure corresponds to
choosing a megapoint X̃ ∈ Q closest to the megapoint X ∈ R2n representing the
data. In other words, we just need to project the point X onto Q orthogonally.

Dimensionality of Q. It takes a little effort to verify that Q is specified by
n− 3 independent relations

(3.18) det

 xi − xi+1 yi − yy+1 x2
i − x2

i+1 + y2
i − y2

y+1

xi − xi+2 yi − yy+2 x2
i − x2

i+2 + y2
i − y2

y+2

xi − xi+3 yi − yy+3 x2
i − x2

i+3 + y2
i − y2

y+3

 = 0

for i = 1, . . . , n − 3, each of which means the co-circularity of the four planar
points (xi, yi), (xi+1, yi+1), (xi+2, yi+2), and (xi+3, yi+3). The relations (3.18) are
polynomials of fourth degree, hence Q is an (n+3)-dimensional algebraic manifold
in R2n defined by quartic polynomial equations.

Relation between P and Q. Note that the dimension of Q is one higher
than that of P, i.e. dim Q = dim P + 1. A closer examination shows that P plays
the role of the boundary of Q, i.e. Q terminates on P. Indeed, imagine n co-
circular points lying on a small arc of a very large circle. Now let us straighten
(flatten) that arc as illustrated in Figure 3.3, and move our n points with the
arc. These points are represented by one megapoint X ∈ Q, and when our arc is
flattening, the point X is moving (sliding) on the surface Q.

As the arc transforms into a straight line (the dashed line in Figure 3.3), our
moving point X ∈ Q leaves the surface Q and instantaneously hits the manifold
P representing all sets of n collinear points. Thus Q borders on P, or P serves as
the boundary (frontier) of Q.

P

Q

Figure 3.4. A grey disk, Q, is cut in half by a line, P.

Moreover, in the above construction we can approach the limit straight line
from each of its two sides. Only one-sided approach is shown in Figure 3.3, but
we can reflect all of the arcs across the dashed line and get another sequence
of arcs converging to the same line from the other side. That shows that there
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are two parts of the surface Q that terminate on P, they approach P from the
opposite directions.

A schematic illustration is shown in Figure 3.4. The grey surface (disk) rep-
resents Q; it is cut into two halves by a black line that represents P. This picture
shows how the surface Q borders on the line P approaching it from two sides.

Geometric description of P and Q. With some degree of informality,
one can say that P cuts right through Q and ‘divides’ it into two pieces. (This
description is purely local, we do not mean to say that Q, as a whole, consists of
two pieces; in fact it is a connected manifold, as every circle can be continuously
transformed into any other circle).

Actually, if one examines the equations (3.18) closely, it becomes clear that
they describe not only all sets of n co-circular points in the plane, but also all sets
of n collinear points. In other words, equations (3.18) describe both manifolds,
Q and P (that is, their union Q ∪ P). This is another way to convince yourself
that lines must be naturally treated as a particular type of circles (we can call
lines, say, ‘degenerate circular arcs’).

Now it is easy to see why the best fitting circle may not exist (if lines are not
treated as circles). Given a data point X ∈ R2n we need to project it orthogonally
onto Q. The projection is well defined unless the point X happens to be right
above P; then its projection of X onto Q falls exactly into the border of Q, i.e.
into P.

3.5. (Non)uniqueness

After we have seen multiple lines fitted to a data set in Section 2.2 it may not
be surprising to find out that there can be multiple fitted circles as well. However
examples are much harder to construct; we review the ones from [43].

–1

1

y

–1 1x

Figure 3.5. A data set for which the objective function has four minima.

Example of multiple circle fits. Let four data points (±1, 0) and (0,±1)
make a square centered at the origin. We place another k ≥ 4 points identically
at the origin (0, 0) to have a total of n = k + 4 points.
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This configuration is invariant under the rotation R = Rπ/2 through the right
angle about the origin. Hence, if a circle S minimizes F , then by rotating that
circle through π/2, π, and 3π/2 we get three other circlesR(S), R2(S), andR3(S)
that minimize F as well. We need to check that R(S) 6= S, so that we get truly
distinct circles; in addition we will make sure that S is a circle, not a line. This
involves some elementary calculations.

Note that R(S) = S if and only if the circle S is centered on the origin, so
we need to show that such circles cannot minimize F . If a circle has radius r
and center at (0, 0), then F = 4(1− r2) + kr2. The minimum of this function is
attained at r = 4/(k + 4), and it equals F0 = 4k/(k + 4). Assuming that k ≥ 4
we can guarantee that the minimum is ≥ 2.

Also, the best fitting lines here pass through the origin and give F1 = 2, as it
follows from the material of Chapter 2.

To conclude our argument it is enough to find a circle on which F < 2.
Consider the circle passing through three points (0, 0), (0, 1), and (1, 0). It only
misses two other points, (−1, 0) and (0,−1), and it is easy to see that for this
circle F < 2. Since F takes on values that are less than F1 and F0 (whenever
k ≥ 4), the best fit will be a circle (not a line), and that circle will not be centered
at the origin. We do not find the best fitting circle, but our argument shows that
it is not unique.

–0.5
0

0.5 a–0.8 –0.4 0 0.2 0.4 0.6 0.8b

0.98
0.99
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1.02
1.03
1.04
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Figure 3.6. The objective function with four minima.

Figure 3.5 illustrates the above example, and Figure 3.6 plots F(a, b) where
four distinct minima are clearly visible.

Other examples. If we change the example replacing the square with a
rectangle, then we can obtain F that has exactly two minima. By replacing the
square with a regular m-gon and increasing the number of identical points at
(0, 0) we can construct F with exactly m minima for any m ≥ 3.

In fact, for m = 3 the corresponding examples are quite simple; they have
been described by Nievergelt [138] and Zelniker and Clarkson [196]. One can
even find the centers and radii of all the best fitting circles explicitly [138].
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Practical remarks. Of course, if the data points are sampled randomly from
a continuous probability distribution, then the chance that the objective function
F has multiple minima is negligible (strictly speaking, it is zero). In particular,
small random perturbations of the data points in our example on Figure 3.5 will
slightly change the values of F at its minima, so that one of them will become a
global (absolute) minimum and three others – local (relative) minima.

We note, however, that while the cases of multiple minima are indeed exotic,
they demonstrate that the global minimum of F may change abruptly if one just
slightly perturbs data points, recall an example of Section 2.2. This fact was also
pointed out by Nievergelt, see page 261 in [138].

3.6. Local minima

Three potential troublemakers. Recall that the minimization of the ob-
jective function (3.1) is a nonlinear problem that has no closed form solution.
Hence there is no finite algorithm that computes the minimum of F . There are
plenty of iterative and approximative methods that solve this problem, which will
be reviewed in the next two chapters.

Here we do a ‘reconnaissance’, we see what may cause trouble in practical
computations. There are three major ways in which conventional iterative pro-
cedures may fail to find the (global) minimum of a given function F :

(a) they converge to a local minimum of F ;
(b) they slow down or stall on a nearly flat plateau or in a valley;
(c) they diverge to infinity if the domain of F is unbounded.

Perhaps the option (a) is the most obvious and frequently discussed in the lit-
erature. In many applications iterative procedures tend to be trapped by local
minima and return false solutions.

One might assume that a function defined by such a complicated expression
as (3.7) would have many local minima, and the number of local minima would
grow with the sample size n. Surprisingly, detailed studies show that this is not
the case, in fact quite the opposite is true.

A numerical search for local minima. An extensive investigation of local
minima of the objective function F was undertaken in [43]. First, the authors
plotted F (in a format similar to Figure 3.6) for a large number of randomly
generated samples and visually inspected the plots; in most cases no local minima
were visible (Figure 3.6 is exceptional; it depicts F for a very special, hand-made
configuration of points).

Next, a sweeping search for local minima was conducted [43] in a machine
experiment organized as follows. First, n data points were generated randomly
from a certain probability distribution. Then the most reliable iterative algorithm
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5 10 15 25 50 100

0 0.879 0.843 0.883 0.935 0.967 0.979
1 0.118 0.149 0.109 0.062 0.031 0.019

≥ 2 0.003 0.008 0.008 0.003 0.002 0.002

Table 3.1. Frequency of appearance of 0, 1, 2 or more local min-
ima of F when n = 5, . . . , 100 points are generated randomly with
a uniform distribution.

(Levenberg-Marquard, which is described in the next chapter) was launched start-
ing at 1000 different, randomly selected initial points (guesses). The idea was that
if there were a local minimum, then at least some of the random initial guesses
would fall into its vicinity attracting the iterations to that minimum. So every
point of convergence was recorded as a minimum (local or global) of F . If there
were more than one point of convergence, then one of them was the global mini-
mum and the others were local minima. If the algorithm converged to the same
limit from all the 1000 random initial guesses, the sample was classified as having
no local minima.

This search for local minima was then repeated for 10000 different random
samples of n data points generated from the same probability distribution. Then
the fraction of simulated samples having 0, 1, 2, etc. local minima was deter-
mined, and the results were recorded for the given n and the given probability
distribution. This experiment was conducted for different values of n and different
probability distributions.

Table Table 3.1 shows the fraction of simulated samples where F had 0, 1, 2
or more local minima for n = 5, . . . , 100 data points; the probability distribution
was uniform in the unit square 0 < x, y < 1 (the size and location of the square
do not matter, due to the invariance of the circle fit under translations, rotations,
and similarities; see Section 4.11).

Rarity of local minima. These results present a remarkable picture: local
minima are found in less that 15% of generated samples! The highest concentra-
tion of local minima (but still below 15%) is recorded for n = 10 points, and it
quickly decreases as n grows; for more that 100 points samples with local min-
ima are virtually nonexistent. Multiple local minima turn up very rarely, if at
all. The maximal number of local minima observed in that large experiment was
four, and that happened only a few times in millions of random samples tested.

Generating points in a square with a uniform distribution produces completely
irregular (“chaotic”) samples without any predefined pattern. This is, in a sense,
the worst case scenario, because different groups of random points presumably
could line up along two or more different arcs thus leading to possibly distinct
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good fits. Still we see that this rarely happens, in > 85% of the samples the
function F has a unique minimum.

More realistic probability distribution were tried in [43], too, in which random
samples were generated along a circular arc with some noise. For example, if
n = 10 points are sampled along a 90o circular arc of radius R = 1 with a
Gaussian noise at level σ = 0.05, then the frequency of appearance of local
minima was as low as 0.001. And this was one of the ‘worse’ cases, in other
realistically looking samples local minima virtually never occurred.

These studies clearly demonstrate that in typical applications the objective
function F is most likely to have a unique (global) minimum and no local minima.
Thus local minima are not a real danger; it can be reasonably assumed that in
F has a unique (global) minimum.

Does this mean that standard iterative algorithms, such as the steepest de-
scent or the Nelder-Mead simplex or Gauss-Newton or Levenberg-Marquardt,
would converge to the global minimum from any starting point? Unfortunately,
this is not the case, as we demonstrate in the next section.

0

0.5

1

–1 1

Figure 3.7. A simulated data set of 50 points.

3.7. Plateaus and valleys

Here we describe the shape of the objective function F(a, b) defined by (3.7)
for typical samples in order to identify possible troubles that iterative algorithms
may run into. We follow [43].

Visual inspection. Figure 3.7 presents a generic random sample of n = 50
points generated along a circular arc (the upper half of the unit circle x2+y2 = 1)
with a Gaussian noise added at level σ = 0.01. Figure 3.8 and Figure 3.9 show
the graph of F plotted by MAPLE in two different scales. One can clearly see
that F has a global minimum close to a = b = 0 and no local minima. Figure 3.10
presents a flat grey scale contour map, where darker colors correspond to deeper
parts of the graph (smaller values of F).

Plateaus. Figure 3.8 shows that the function F does not grow as a, b →∞.
In fact, it is bounded (see the proof of Theorem 3.5 below), i.e. F(a, b) ≤ Fmax <
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Figure 3.8. The objective function F for the data set shown in
Figure 3.7 (large view).

∞. The boundedness of F actually explains the appearance of large nearly flat
plateaus and valleys on Figure 3.8 that stretch out to infinity in some directions.
If an iterative algorithm starts somewhere in the middle of such a plateau or a
valley, or gets there by chance, it will have hard time moving at all, since the
gradient of F will almost vanish. We indeed observed conventional algorithms
getting “stuck” on flat plateaus or valleys in our tests.
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Figure 3.9. The objective function F for the data set shown in
Figure 3.7 (a vicinity of the minimum).

Two valleys. Second, there are two particularly interesting valleys that
stretch roughly along the line a = 0 in Figure 3.8 through Figure 3.10. One of
them, corresponding to b < 0, has its bottom point right at the minimum of F .
The function F slowly decreases along the valley as it approaches the minimum.
Hence, any iterative algorithm starting in that valley or getting there by chance
should, ideally, find its way downhill and arrive at the minimum of F .

The other valley corresponds to b > 0, it is separated from the global min-
imum of F by a ridge. The function F slowly decreases along that valley as b
grows. Hence, any iterative algorithm starting in that valley or getting there “by
accident” will be forced to move up along the b axis, away from the minimum of
F , and diverge to infinity.
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Figure 3.10. A grey-scale contour map of the objective function
F . Darker colors correspond to smaller values of F . The minimum
is marked by a cross.

Wrong valley perils. If an iterative algorithm starts at a randomly chosen
point, it may go down either valley, and there is a chance that it descends into
the second (wrong) valley and then diverges. For the sample on Figure 3.7,
the authors of [43] applied the Levenberg-Marquardt algorithm starting at a
randomly selected initial guess within the square 5× 5 about the centroid (x̄, ȳ)
of the data. They found that the algorithm indeed escaped to infinity with
probability about 50%.

Existence of the escape valley. Unfortunately, such “escape valleys” are
almost inevitable: a detailed theoretical analysis shows that for every typical data
set the graph of F contains an escape valley. This is a mathematical theorem
stated below.

Theorem 3.5 (Two Valley Theorem). For every typical data set, there is a pair
of valleys on the graph of the objective function F(a, b) stretching out in opposite
directions, so that one valley descends to the minimum of F , while the other
valley descends toward infinity.

The exact meaning of the word ‘typical’ will be clarified in the the proof. Our
proof is quite long, but it reveals many useful facts beyond the existence of the
two valleys, so we present it in full in the next section.

3.8. Proof of Two Valley Theorem
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This section is devoted to the proof of Theorem 3.5. We will find the two
valleys by examining the behavior of the objective function F for large a and b,
i.e. as a2 + b2 → ∞. In that case R → ∞ as well, due to (3.6), and the fitting
arc is close to a straight line, so we can use some facts established in Chapter 2.

Taylor expansion. We introduce a new variable D2 = a2 + b2 and express
a = D cos ϕ and b = D sin ϕ for some ϕ ∈ [0, 2π). Then (3.3) takes form

di =
√

(xi −D cos ϕ)2 + (yi −D sin ϕ)2 −R

=
√

zi − 2uiD + D2 −R,

where we use shorthand notation

zi = x2
i + y2

i and ui = xi cos ϕ + yi sin ϕ.

Expanding di into Taylor series gives

di = D − ui +
zi − u2

i

2D
−R +O(1/D2).

Note that
zi − u2

i = v2
i where vi = −xi sin ϕ + yi cos ϕ.

Due to (3.6) we have
∑

di = 0, hence

D −R = ū− vv

2D
+O(1/D2),

where we use ‘sample mean’ notation ū = 1
n

∑
ui, vv = 1

n

∑
v2

i , etc. Introducing
another new variable δ = 1/D we obtain

di = −(ui − ū) + δ(v2
i − vv)/2 +O(δ2).

Squaring and averaging over i gives

(3.19) 1
n
F = uu− ū2 −

[
uvv − ūvv

]
δ +O(δ2).

This is a crucial expansion, we rewrite if, for brevity, as
1
n
F = f0 + f1δ +O(δ2).

Main term. The main term is

f0 = uu− ū2

= sxx cos2 ϕ + 2sxy cos ϕ sin ϕ + syy sin2 ϕ,

where sxx, sxy, syy are the components of the scatter matrix S introduced in (1.5).
In matrix form, we have

f0 = ATSA,

where A = (cos ϕ, sin ϕ)T , again as in Section 2.3, so we can use the results of
that section.
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Let 0 ≤ λ1 ≤ λ2 denote the eigenvalues of S and A1, and A2 the corresponding
eigenvectors. If λ1 = λ2, then f0 (as a function of ϕ) is constant, but this
only occurs when the data set admits infinitely many orthogonal fitting lines
(Section 2.3). This constitutes an exceptional event (to which our theorem does
not apply).

Setting the exceptional case aside, we assume that λ1 < λ2. Then f0 is a
non-constant function of ϕ that has two properties:

(a) f0(ϕ) is a periodic function with period π;
(b) f0(ϕ) takes values in the interval [λ1, λ2]; its minimum value is λ1 taken

on A = A1 and its maximum value is λ2 taken on A = A2.

See Figure 3.11. By the way, the boundedness of f0 demonstrates that F(a, b) is
a bounded function, as we have mentioned earlier.

Since f0 has period π, it takes its minimum on the interval [0, 2π] twice: at
a point ϕ1 corresponding to the vector A1 and at ϕ1 + π corresponding to the
opposite vector −A1. Thus there are two valleys on the graph of F , they stretch
in opposite directions (A1 and −A1); both valleys are parallel to the vector A1,
i.e. they are orthogonal to the best fitting line (as ϕ is the direction of its normal,
see Section 2.1).

Second order term. To examine the declination (direction of decrease) of
those valleys, we need to analyze the behavior of the function F in their bottoms,
which due to (3.19) is given by

(3.20) 1
n
F = λ1 + f1(ϕ)δ +O(δ2)

with ϕ = ϕ1 for one valley and ϕ = ϕ1 + π for the other valley.
To simplify our formulas, we assume that the coordinate system is chosen so

that its origin coincides with the centroid of the data, i.e. x̄ = ȳ = 0. In that
case also ū = v̄ = 0, and we arrive at

f1(ϕ) = −uvv

= −xyy cos3 ϕ− (yyy − 2xxy) cos2 ϕ sin ϕ

− xxy sin3 ϕ− (xxx− 2xyy) cos ϕ sin2 ϕ.

Thus f1(ϕ) is a periodic function with period 2π, and it is antiperiodic with
period π, i.e.

f1(ϕ) = −f1(ϕ + π).

See Figure 3.1. In particular, f1(ϕ1) = −f1(ϕ1 + π). Hence if f1 is positive at
the bottom of one valley, then it is negative at the bottom of the other, and vice
versa.

It now follows from (3.20) that if f1 > 0 at the bottom of one of the two
valleys, then F decreases as δ → 0 (i.e. as D →∞), hence the valley decreases as
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Figure 3.11. Functions f0(ϕ) (green dashed line) and f1(ϕ) (blue
solid line) for a randomly generated data set.

it stretches out to infinity. If f1 < 0 along a valley, then F increases as D →∞,
i.e. the valley increases as it stretches out to infinity.

This proves the theorem in the case f1(ϕ1) 6= 0. It remains to examine the
case f1(ϕ1) = 0; this will constitute another exceptional event.

Two exceptional cases. Let us rotate the coordinate system so that its x
axis coincides with the best fitting line (i.e. with the major axis of the scattering
ellipse). Then sxy = 0 and sxx > syy, and f0 takes its minimum at ϕ1 = π/2,
hence

f1(ϕ1) = −uvv = −xxy.

The event

(3.21) xxy = 1
n

n∑
i=1

x2
i yi = 0

is clearly exceptional. If the data are sampled randomly from a continuous prob-
ability distribution, the event (3.21) occurs with probability zero.

This is the second exceptional even to which our theorem does not apply. Now
we clarify the exact meaning of the word ‘typical’ in the theorem’s statement: it
means precisely that λ1 6= λ2 and xxy 6= 0. The proof is complete. �

Final remarks. We emphasize that the above theorem is very general, the
‘escape valley’ exists whether data points are sampled along an incomplete circle
(a small arc) or along an entire circle. Practically, however, in the latter case
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iterative algorithms are quite safe, as the escape valley lies far away from the
data set, making it hard to get there.

On the other hand, for data sampled along a short arc, the escape valley gets
dangerously close to the data set, so an iterative algorithm can be easily trapped
in that valley.

3.9. Singular case

Here we take a closer look at the singular case arising in the circle fitting
problem (described in Section 3.2), i.e. when the data are sampled along a small
arc.

A word of caution. This is exactly the case where the conventional iterative
algorithms are likely to be caught in the wrong (‘escape’) valley and diverge. This
is also the case where the best fitting circle may not even exist, i.e. the best fitting
line may ‘beat’ all circles.

This case must be handled with care. One possible strategy of dealing with
the singular case is described here; we use the details of the proof of Two Valley
Theorem given in the previous section.

Analytic classification of valleys. First, we need to to center the co-
ordinate system on the centroid of the data (x̄, ȳ). In that coordinate system
x̄ = ȳ = 0. Then we align the x axis with the major axis of the scattering ellipse,
ensuring that sxy = 0 and sxx > syy. Now the best fitting line is the x axis (and
on this line the function F takes value F = nf0, cf. (3.19)).

In this (adjusted) coordinate system, the value

xxy = 1
n

n∑
i=1

x2
i yi

plays a crucial role, it is the ‘signature’ of the data set. Precisely, we have proved
the following relations:

(a) if xxy > 0, then the center of the best fitting circle lies above the x axis;
the wrong valley lies below the x axis;

(b) if xxy < 0, then the center of the best fitting circle lies below the x axis;
the wrong valley lies above the x axis.

These simple rules can be used to choose a ‘safe’ initial guess for an iterative
algorithm and help it avoid the wrong valley and direct it properly.

A relater issue: when lines ‘beat’ circles’. Another important corollary
of our analysis is

Theorem 3.6. In the case xxy 6= 0 the best fitting circle exists, i.e. the best
fitting line cannot beat the best circle.
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Best line
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Figure 3.12. Best circle ‘beats’ the best line despite xxy = 0.

On the other hand, even if xxy = 0, the best fitting circle may still exist. For
instance, let n = 4 data points be the vertices of a rectangle, see Figure 3.12.
Then the best fitting line cuts the rectangle in half, and one can easily see that
in the adjusted coordinate system xxy = 0 (due to the symmetry about the x
axis). However, the circumscribed circle interpolates all the four data points, so
it provides a perfect fit (F = 0), thus it beats any line.

To summarize our theoretical conclusions, we see that

(a) if xxy 6= 0, then the best fitting circle always exists (and it beats any
line);

(b) if xxy = 0, then the best fitting circle may or may not exist, depending
on the data set; i.e. it is possible that the best fitting line beats all circles.

Practically, this means that if xxy = 0, then one should check the best fitting
line (the x axis) as a potential solution of the circle fitting problem. If xxy 6= 0,
then lines can be ignored.

Practical recommendations. In fact, one should be very careful when the
critical value xxy gets too close to zero. As it follows from the expansion (3.19),

R = O(1/xxy),

i.e. if xxy is too close to zero, then the radius of the best fitting circle may
be extremely large; in that case an attempt to compute a, b and R may cause
catastrophic loss of accuracy described in Section 3.2.

The following simple ‘safety checkpoint’ may be adopted to avoid catastrophic
results. Suppose our coordinates xi’s and yi’s are of order one; in that case if an
iterative algorithm reaches values R ≥ 108, then further calculations would be
meaningless; hence the iterations should be terminated and the algorithm should
return the best fitting line (the x axis) as the solution of the circle fitting problem.
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This concludes our theoretical analysis of the circle fitting problem. It will be
invaluable in the assessment of practical algorithms to which we turn next.





CHAPTER 4

Geometric circle fits

Two types of fitting algorithms. In this and the next chapters we discuss
practical solutions to the circle fitting problem. Recall that our main task is to
minimize the nonlinear function F given by (3.1). Its minimum cannot be given
in a closed form or computed by a finite algorithm. All the existing practical
solutions can be divided into two large groups:

(A) iterative algorithms that are designed to converge to the minimum of

F =
n∑

i=1

d2
i ,

where di are geometric (orthogonal) distances from the data points to
the circle. The minimization of F is referred to as geometric fit ;

(B) approximative algorithms that replace di with some other quantities, fi,
and then minimize

F1 =
n∑

i=1

f 2
i ;

usually fi are defined by simple algebraic formulas (without radicals),
and the resulting solution is called algebraic fit.

In this chapter we describe the most popular geometric fits (type A). The next
chapter is devoted to algebraic approximative methods (type B).

Comparison. The geometric fit is commonly regarded as being more accu-
rate than algebraic fits (even though this opinion is based mostly on practical
experience; our Chapter 7 provides some theoretical analysis of this issue). But
every geometric fitting procedure is iterative, subject to occasional divergence,
and in any case computationally expensive. On the contrary, algebraic fits are
usually simple, reliable, and fast.

Algebraic fits are often used to supply an initial guess to a subsequent iterative
geometric fitting routine. Some modern algebraic fits, however, are so accurate
that geometric fits would not make much further improvement. In most practical
applications a well designed algebraic fit (such as Taubin’s or Pratt’s method, see
the next chapter) will do a satisfactory job.

71
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Thus the reader who is just looking for a simple and efficient circle fit should
go directly to the next chapter and check the Pratt fit or (even better) the Taubin
circle fit. The reader who needs a geometric fit, regardless of its high cost, or
who wants to learn this topic in general, should read this chapter.

4.1. Classical minimization schemes

We begin with a brief description of general numerical schemes used to min-
imize smooth functions of several variables, especially those adopted to least
squares problems. First we recall two classical algorithms that are a part of any
standard numerical analysis course.

Steepest descent. Suppose we need to find the minimum of a smooth
function G : Rk → R, i.e.

(4.1) z = G(a), a = (a1, . . . , ak) ∈ Rk

of k variables. Iterative procedures usually compute a sequence of points a(0),
a(1), . . . that presumably converges to a point where G takes its minimum value.
The starting point a(0) (the initial guess) is assumed to be chosen somehow, and
the procedure follows a certain rule to determine a(i+1) given a(i).

That is, to define a procedure, it suffices to describe the rule of constructing
the next approximation, a′, from the current approximation, a.

We always assume that the derivatives of the function G can be evaluated;
hence one can find the gradient vector ∇G(a), and then the most logical move
from a would be in the direction opposite to ∇G(a), where the function G de-
creases most rapidly. This method is called the steepest descent. It can be
described by a formula

a′ = a− η∇G(a),

where η > 0 is a factor. The choice of η is based on the following general
considerations.

Choosing the step length. If η is too large, one may ‘overstep’ the region
where G takes small values and land too far. If η is too small, the progress will
be slow, but at least the function will decrease, i.e. one gets G(a′) < G(a).

The simplest approach is to set η = 1, compute a′, and then check if it is
acceptable. If G(a′) < G(a), the value a′ is accepted, otherwise one ‘backtracks’
by trying smaller values of η (for instance, η = 1/2, then η = 1/4, etc.) until a′

is acceptable.
Other (clever but more expensive) methods of adjusting the factor η exist,

such as golden section, Brent method, various line searches with derivatives, we
refer the reader to standard books in numerical analysis, such as [151].

Generally, the steepest descent is a reliable method, but it usually converges
slowly (at best, linearly).
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Newton-Raphson method. If the second derivatives of G are available,
one can compute both the gradient vector and the Hessian matrix of the second
order partial derivatives:

(4.2) D = ∇G(a) and H = ∇2G(a)

and approximate G in a vicinity of a by the quadratic part of its Taylor polyno-
mial:

(4.3) G(a + h) ≈ G(a) + DTh + 1
2
hTHh,

where h = a′− a denotes the step. Now one can choose h as the critical point of
this quadratic approximation, i.e. find h by solving

(4.4) D + Hh = 0.

This is the Newton-Raphson method.
It converges fast (quadratically) if the current iteration is already close enough

to the minimum of G. However, this method may run into various problems.
First, just as the steepest descent, it may ‘overstep’ the region where G takes
small values and land too far, then one has to ‘backtrack’. Second, the matrix H
may not be positive-definite, then the quadratic approximation in (4.3) will not
even have a minimum: the solution of (4.4) will be a saddle point or a maximum.
In that case the quadratic approximation in (4.3) seems to be quite useless.

Fortunately, the least squares problems allow an efficient way to get around
the last trouble, see the next section.

4.2. Gauss-Newton method

Least squares problem. Consider a problem in which we are to minimize
a function

(4.5) G(a) =
n∑

i=1

g2
i (a)

of k variables a = (a1, . . . , ak). We assume that n > k, and gi have derivatives.

Newton-Raphson approach to the least squares problem. As in
Newton-Raphson scheme, we start by approximating G(a + h) by a quadratic
part of Taylor polynomial:

(4.6) G(a + h) ≈ G(a) + DTh + 1
2
hTHh.

where

(4.7) D = ∇G(a) = 2
n∑

i=1

gi(a)∇gi(a)
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is the gradient of G and

(4.8) H = ∇2G(a) = 2
n∑

i=1

[∇gi(a)][∇gi(a)]T + 2
n∑

i=1

gi(a)∇2gi(a)

is the Hessian matrix of G. The Newton-Raphson method (4.4) uses both D and
H.

Gauss-Newton for the least squares problem. The Gauss-Newton method
drops the last sum of (4.8), i.e. it replaces H with

(4.9) H� = 2
n∑

i=1

[∇gi(a)][∇gi(a)]T .

To justify this replacement, one usually notes that in typical least squares appli-
cations gi(a) are small, hence the second sum in (4.8) is much smaller than the
first, so its removal will not change the Hessian matrix H much. Also one notes
that modifying H cannot alter the limit point of the procedure, it can only affect
the path that the iterations take to approach that limit1.

Advantages. Replacing H with H� has two immediate advantages:

(a) The computation of second order derivatives of gi is no longer necessary;
(b) Unlike H, the new matrix H� is always positive semi-definite.

Assume for a moment that H� is nonsingular. Then the quadratic expression

G(a) + DTh + 1
2
hTH�h

has a minimum, it is attained at h that satisfies equation

(4.10) D + H�h = 0.

Hence h = −(H�)−1D, and the next approximation is a′ = a + h.

Applying methods of linear algebra. Introducing matrix notation g =
(g1(a), . . . , gn(a))T and

(4.11) J =

 ∂g1/∂a1 . . . ∂g1/∂ak
...

. . .
...

∂gn/∂a1 . . . ∂gn/∂ak


we obtain D = 2JTg and H� = 2JTJ. Therefore, h is the solution of

(4.12) JTJh = −JTg.

This equation corresponds to the overdetermined linear system

(4.13) Jh ≈ −g,

1However it can (and does!) slow down the rate of convergence, especially if gi(a) are not
so small, see more on that in the end of this section.
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which is the classical least squares problem of linear algebra, cf. Section 1.7. Its
(minimum-norm) solution is

(4.14) h = −J−g = −(JTJ)−JTg = −(H�)−D,

where (·)− denotes the Moore-Penrose pseudoinverse. This formula works whether
H� is singular or not.

Remark 4.1. One can arrive at (4.12) differently. As our goal is to minimize G =
‖g‖2, one can replace g(a + h) with its linear approximation g(a) + Jh and minimize
‖g(a)+Jh‖2 with respect to h; this is exactly the classical least squares problem (4.13),
and its solution is given by (4.14).

Remark 4.2. The system of ‘normal equations’

JTJh = −JTg

can be solved numerically in several ways. A simple inversion of the matrix JTJ or the
Gaussian elimination method are not recommended, since they do not take advantage
of the positive semi-definiteness of JTJ and are prone to large round-off errors. A better
method is Cholesky factorization of JTJ, it is fairly fast and accurate. Its drawback is
somewhat poor performance when the matrix J happens to be ill-conditioned. Then
one can resort to numerically stable methods of linear algebra: QR decomposition or
SVD; see [78].

For example, denote by J = UΣVT the (short) singular value decomposition (SVD)
of the matrix J, where U is a (rectangular) n × k orthogonal matrix, V is a (small)
k × k orthogonal matrix, and Σ is a diagonal k × k matrix. Then

h = −VΣ−1UTg,

Speed of convergence. Many authors assert that the Gauss-Newton method,
just like its Newton-Raphson prototype, converges quadratically, but this is not
exactly true. The modification of H, however small, does affect the asymptotic
speed of convergence, and it becomes linear, see [23]. Precisely, if a∗ denotes the
limit point, then one can only guarantee that

‖a′ − a∗‖ < c‖a− a∗‖
with some c < 1. However, the convergence constant c here is proportional to
G(a∗), hence it is actually close to zero when gi(a

∗)’s are small. That does not
make the convergence quadratic, but with some degree of informality it can be
described as nearly quadratic.

4.3. Levenberg-Marquardt correction

The Gauss-Newton method works well under favorable conditions, in which
case its convergence is fast, but it may still overstep the region where G takes
small values, as we noted above, and its performance may be problematic if the
‘design matrix’ N = JTJ happens to be near-singular.
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1. Initialize a0 and λ0, set k = 0.
2. At the current point ak compute the vector gk and its gradient Jk.
3. Compute hk by solving equation (JT

k Jk + λkI)hk = −JT
k gk.

4. Compute the vector g′ at the point a′ = ak + hk.
5. If ‖g′‖2 ≥ ‖gk‖2, reset λk := βλk and return to Step 3.
6. Update λk+1 = αλk and ak+1 = ak + hk, increment k, return to Step 2.

Table 4.1. Levenberg-Marquardt algorithm.

Augmenting the design matrix. The Levenberg-Marquardt correction
aims at eliminating these drawbacks. The design matrix N is augmented to

(4.15) Nλ = N + λI,

where λ > 0 is an additional ‘control’ parameter and I is the k×k identity matrix.
In other words, the diagonal entries of N are increased by λ. Then, instead of
(4.12), one solves the new system

(4.16) Nλh = −JTg

to determine h. Note that the matrix Nλ, with λ > 0, is always positive definite
(while N is only guaranteed to be positive semi-definite), and in fact all the
eigenvalues of Nλ are ≥ λ.

Checkpoint. After h has been computed, the algorithm passes through a
checkpoint. If the new approximation a′ = a + h reduces the value of G, i.e. if
G(a′) < G(a), it is accepted and λ is decreased by a certain factor α before the
next iteration (suppressing the corrective term λI).

Otherwise the new value a′ = a + h is rejected, λ is increased by a certain
factor β and the augmented normal equations Nλh = −JTg are solved again.
These recursive attempts continue until the increment h leads to a smaller value
of G. This is bound to happen, since for large λ the method approaches the
steepest descent.

Advantages. In other words, when λ increases, the recomputed vector h not
only gets smaller but also turns (rotates) and aligns somewhat better with the
negative gradient vector −∇G(a). As λ → ∞, the length of h approaches zero
and its direction converges to that of −∇G(a) (Figure 4.1).

We see that the Levenberg-Marquardt correction combines two classical ideas:

(a) The quadratic approximation to the function, which works well in a
vicinity of its minimum and yields a fast (nearly quadratic) convergence.
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(b) The steepest descent scheme that ensures reliability in difficult cases.

As the algorithm is based on a reasonable balance between these two principles,
it is sometimes referred to as Marquardt compromise.

Practical issues. In many implementations, the parameter λ is initialized
to a small value, e.g. 10−3 or 10−4. A common choice for α and β is α = 0.1 and
β = 10.

Remark 4.3. Just like equations (4.12) in the previous section, the new system Nλh =
−JTg can be solved numerically in many ways, including Cholesky factorization, QR
decomposition, and SVD. The use of QR and SVD requires a trick, though, because
the system (4.16) is not in the right form (yet). The trick is to rewrite (4.16) as

(4.17) JT
λJλh = −JT

λg0,

where the matrix Jλ is obtained by appending the k × k scalar matrix
√

λ I to the
bottom of J, and the vector g0 is obtained by extending g with k trailing zeros:

Jλ =
[

J√
λ I

]
, g0 =

[
g
0

]
.

Now the system (4.17) is equivalent to the least squares problem

Jλh ≈ −g0,

whose solution is h = −J−λ g0, which can be computed by QR or SVD (as we described
in the end of the previous section).

History. Levenberg-Marquardt correction was introduced in the middle of
the XX century: it was invented by Levenberg [122] in 1944, rediscovered and
enhanced by Marquardt [131] in 1963. It was popularized in the 1970’s; see e.g.
[71]. This method and its variant called the trust region, see the next section,
dominate the literature on least squares applications in the past decades.

4.4. Trust region

To complete our survey of general minimization schemes, we will describe the
trust region method, which currently constitutes ‘the state of the art’.

Motivation. The Levenberg-Marquardt algorithm is flexible enough to avoid
obvious pitfalls of the classical minimization schemes and virtually guarantees
convergence to a minimum of the objective function. Its drawback, though,
is that the control parameter λ is just an abstract variable whose values have
no apparent relation to the problem at hand. Therefore it is hard to properly
initialize λ. Also, the Levenberg-Marquardt simplistic rules for updating λ (by
arbitrarily chosen factors α and β) often cause erratic, suboptimal performance.

A variant of the Levenberg-Marquardt method was developed in the 1970s
that fixed the above drawback. It was popularized by Moré in his well written
1978 paper [133]. Eventually this method came to be known as trust region
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and was adopted in nearly all standard software packages, such as MATLAB
Optimization Toolbox, MINPACK [134], ODRPACK [22, 23], etc. We describe
its main ideas here, referring to [133] for further technical details.

Geometric description of Levenberg-Marquardt. The Levenberg-Marquardt
method can be interpreted geometrically as follows. Recall that an iteration of
the Gauss-Newton method consists in minimization of the quadratic function

Q(a + h) = ‖g(a) + Jh‖2,

which approximates the given function G(a + h) in a vicinity of the current
iteration a, cf. Remark 4.1. Figure 4.1 shows the contour map (the sets of level
curves) of Q(a + h) in the 2D case; the level curves are concentric ellipses.

a

01
2

bλ

b b b

Figure 4.1. The level curves of Q(a + h) are concentric ellipses
(solid ovals), the boundaries of trust regions are dashed circles
around a.

The ‘pure’ Gauss-Newton step (i.e. when λ = 0) lands at the minimum of
Q(a + h), i.e. at the ellipses’ center b0. When λ > 0, the Levenberg-Marquardt
step (the solution of (4.16)) lands at some other point, bλ = a + h, closer to a.
At that point we have, according to (4.16),

gradQ(a + h) = −λh.

Accordingly, the vector h = bλ − a crosses the level curve of Q(a + h) passing
through bλ, orthogonally. This means that bλ provides the minimum of the
function Q(a + h) restricted to the ball B(a, ∆) whose center is a and whose
radius is ∆ = ‖h‖. In other words, the Levenberg-Marquardt step with λ > 0
minimizes the restriction of the quadratic approximation Q(a + h) to a certain
ball around the current approximation a whose radius ∆ is determined by λ.
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As λ > 0 grows, the point bλ moves closer to a, and ∆ decreases. At the
same time the vector h = bλ − a rotates and makes a larger angle with the level
curves. In the limit λ →∞, the ball B(a, ∆) shrinks to the point a, i.e. ∆ → 0,
and the vector h ultimately aligns with the direction of the steepest descent.

Replacing the control parameter. Therefore, there is a one-to-one corre-
spondence between λ > 0 and ∆ ∈ (0, ‖b0−a‖), hence one can use ∆, instead of
λ, as a control parameter, i.e. adjust ∆ from iteration to iteration. As ∆ has a
clear meaning (further explained below), its initialization and its update at each
iteration can be done in a more sensible way than the way λ is treated in the
Levenberg-Marquardt scheme.

One benefit of dealing with ∆ is that one can directly control the region in the
parameter space where the quadratic approximation Q(a+h) is minimized. It is
called the trust region, the idea behind it is that we minimize the approximation
Q(a+h) where it can be trusted and do not go too far where the approximation
is not deemed reliable.

New updating rules. This interpretation of ∆ also leads to the following
update strategy. After a step h is computed, one finds the ratio

r =
Ared

Pred
=
G(a)− G(a + h)

G(a)−Q(a + h)

of the Actual reduction, Ared, and the Predicted reduction, Pred, of the objective
function. One should note that G(a) = Q(a), hence the denominator is always
positive, but the numerator is positive only if the actual reduction occurs, in
which case of course we should accept the step h.

However, we adjust ∆ based on the value of r. A common strategy is as
follows. If r < 0.25, then the quadratic approximation is not deemed quite
reliable (despite the actual decrease of the objective function) and we reduce the
size ∆ before the next iteration (say, by ∆ := ∆/2). Only if r > 0.75, then
the approximation is regarded as sufficiently accurate and we increase ∆ (by
∆ := 2∆). In the intermediate case 0.25 ≤ r ≤ 0.75 we leave ∆ unchanged.
Note that these rules are quite different (in a sense, more conservative) than the
simplistic rules of updating λ in the previous section!

The subproblem. We summarize the main steps of the trust region scheme
in Table 4.2. An attentive reader should notice that we have yet to specify
Step 3. This is known as the trust region subproblem: Given the size ∆ > 0
of the trust region around the current approximation a, determine the corre-
sponding parameter λ ≥ 0. There is a variety of solutions of this problem in
the literature, Newton-based schemes [70, 135], dog-leg procedure [148, 149],
conjugate gradient [172], quadrature-type methods [26]. We found that for our
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1. Initialize a0 and ∆0, set k = 0.
2. At the current point ak compute the vector gk and its gradient Jk.
3. For the current ak and ∆k, determine λk.
4. Compute hk by solving equation (JT

k Jk + λkI)hk = −JT
k gk.

5. Find the ratio rk = Aredk/Predk.
6. If rk < 0, reset ∆k := 1

2
∆k and return to Step 3.

7. If rk < 0.25, update ∆k+1 = 1
2
∆k; if r > 0.75, update ∆k+1 = 2∆k.

8. Update ak+1 = ak + hk, increment k, and return to Step 2.

Table 4.2. Trust region algorithm.

particular application of fitting circles to data the early Newton-based algorithm
with bracketing described by Moré [133] works best.

A MATLAB implementation of the trust region algorithm for fitting circles
can be found on our web page [84].

4.5. Levenberg-Marquardt for circles: full version

Fitting a circle to observed points involves the minimization of

(4.18) F(a, b, R) =
n∑

i=1

[√
(xi − a)2 + (yi − b)2 −R

]2
.

This is a relatively simple expression, so that the Levenberg-Marquardt procedure
goes smoothly. Let us introduce shorthand notation:

(4.19) ri =
√

(xi − a)2 + (yi − b)2

and

(4.20) ui = −∂ri/∂a = (xi − a)/ri

and

(4.21) vi = −∂ri/∂b = (yi − b)/ri.

Then one can compute directly

J =

 −u1 −v1 −1
...

...
...

−un −vn −1
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1. Initialize (a0, b0, R0) and λ, compute F0 = F(a0, b0, R0).
2. Assuming that (ak, bk, Rk) are known, compute ri, ui, vi for all i.
3. Assemble the matrix N and the vector JTg.
4. Compute the matrix Nλ = N + λI.
5. Solve the system Nλh = −JTg for h by Cholesky factorization.
6. If ‖h‖/Rk < ε (small tolerance), then terminate the procedure.
7. Use h = (h1, h2, h3) to update the parameters

ak+1 = ak + h1, bk+1 = bk + h2, Rk+1 = Rk + h3.
8. Compute Fk+1 = F(ak+1, bk+1, Rk+1).
9. If Fk+1 ≥ Fk or Rk+1 ≤ 0, update λ 7→ βλ and return to Step 4;

otherwise increment k, update λ 7→ αλ, and return to Step 2.

Table 4.3. Levenberg-Marquardt circle fit.

and then

N = n

 uu uv ū
uv vv v̄
ū v̄ 1


as well as

(4.22) JTg = n

 Rū− ur
Rv̄ − vr
R− r̄

 = n

 Rū + a− x̄
Rv̄ + b− ȳ

R− r̄

 ,

where, according to the previous section,

g =
[
r1 −R, . . . , rn −R

]T
.

Here we use our ‘sample mean’ notation, for example uu = 1
n

∑
u2

i , etc.

Now we have all the necessary formulas to implement the the Levenberg-
Marquardt procedure. This can be done in two ways, each has its own merit. The
most efficient one is to form the matrix Nλ = N+λI and solve the system Nλh =
−JTg by Cholesky factorization. For the reader’s convenience we summarize this
scheme in Table 4.3.

Practical remarks. We note that u2
i + v2

i = 1 for all i, hence uu + vv = 1,
which makes 1 the dominant diagonal element of the matrix 1

n
N; this information

helps if one uses Cholesky factorization with pivoting.
The Cholesky solution is fast, but it may run into computational problems

if the matrix Nλ happens to be nearly singular. We recommend a numerically
stable scheme that requires a little more work but provides ultimate accuracy.



82 4. GEOMETRIC CIRCLE FITS

It applies QR decomposition or SVD to the least squares problem Jλh ≈ g0 as
described in Remark 4.3. The corresponding MATLAB code is available from
our web page [84]. Very similar implementations are described in [67, 166].

We postpone the analysis of convergence until later in this chapter and the
choice of the initial guess until Section 5.13.

4.6. Levenberg-Marquardt for circles: reduced version

One can ‘reduce’ the Levenberg-Marquardt procedure for circles by eliminat-
ing one parameter, R, as in Section 3.2, and minimizing the resulting expression

(4.23) F(a, b) =
n∑

i=1

(ri − r̄)2,

which was constructed in (3.7). Differentiating with respect to a and b gives

J =

 −u1 + ū −v1 + v̄
...

...
−un + ū −vn + v̄

 ,

where we use ‘sample mean’ notation ū = 1
n

∑
ui, etc. This yields

N = n

[
uu− ū2 uv − ūv̄
uv − ūv̄ vv − v̄2

]
.

We also get

JTg = n

[
−ur + ūr̄
−vr + v̄r̄

]
= n

[
a− x̄ + ūr̄
b− ȳ + v̄r̄

]
.

One can easily recognize elements of these matrices as sample covariances of the
corresponding variables.

Numerical tests. This reduced version of the Levenberg-Marquardt circle
fit is slightly simpler and faster than the full version presented in the previous
section. A typical example is shown in Figure 4.2, where 20 points are randomly
generated along a 130o arc of the unit circle x2 + y2 = 1 with a Gaussian noise
at level σ = 0.05, and both version of the Levenberg-Marquardt fit start at
a = b = 1. They both converge to the (unique) minimum of F at â = −0.057

and b̂ = 0.041 in 7 iterations, but took somewhat different paths to the limit.
Numerical tests conducted in the course of a computer experiment reported

in [43] showed that while these two versions perform almost identically in typical
cases, the reduced version appears slightly inferior in unfavorable situations: if
supplied with a bad initial guess, it has an unfortunate tendency to stall in the
middle of a plateau.
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Figure 4.2. Two versions of the Levenberg-Marquardt circle fit
with initial guess at (1, 1): the full version (the blue solid line
with star markers) and the reduced one (the red dashed line with
diamond markers) converge to the same limit in 7 step; here 20
simulated points are marked by crosses.

4.7. A modification of Levenberg-Marquardt circle fit

It is also tempting to compute the Hessian matrix H in (4.8) exactly, without
discarding the second sum in it, thus possibly improving the convergence. Here
we explore this approach.

Expanding the squares in (4.23) gives

(4.24) F(a, b) =
n∑

i=1

r2
i − nr̄2 =

n∑
i=1

(x2
i + y2

i ) + n(a2 + b2 − r̄2).

where we assume, to shorten our formulas, that the data are centered, i.e. x̄ =
ȳ = 0 (some authors claim [53, 176] that centering the data prior to the fit helps
reduce round-off errors).

Since the first sum in (4.24) is independent of parameters, we can ignore
it, along with the constant factor n in the second term, hence we arrive at the
problem of minimizing a new function:

(4.25) F1(a, b) = a2 + b2 − r̄2.
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Differentiating with respect to a and b gives

(4.26)
1

2
∇F1 =

[
a + ūr̄
b + v̄r̄

]
.

The second order partial derivatives are

1

2

∂2F1

∂a2
= 1− ū2 + r̄

∂ū

∂a
1

2

∂2F1

∂b2
= 1− v̄2 + r̄

∂v̄

∂b
(4.27)

1

2

∂2F1

∂a∂b
= −ūv̄ + r̄

∂ū

∂b
.

Using again the ‘sample mean notation’ we have

−∂ū

∂a
=

1

n

∑ v2
i

ri

= vv/r

−∂v̄

∂b
=

1

n

∑ u2
i

ri

= uu/r

and
∂ū

∂b
=

1

n

∑ uivi

ri

= uv/r.

Therefore,

(4.28) N =
1

2
H =

[
1− ū2 − r̄ vv/r −ūv̄ + r̄ uv/r

−ūv̄ + r̄ uv/r 1− v̄2 − r̄ uu/r

]
.

Then one augments the matrix N to Nλ and solves the system

Nλh = −1

2
∇F1.

We note that here, unlike the canonical Gauss-Newton algorithm, the matrix N is
not necessarily positive semi-definite; hence Nλ is not necessarily positive definite
for small λ > 0. But for large enough λ the augmented matrix Nλ computed by
(4.15) will be positive definite.

Practical remarks. This version of the Levenberg-Marquardt circle fit is
more complicated and expensive than the previous two: there is an additional
cost of computation for the terms uu/r, vv/r, and uv/r.

The performance of this algorithm was also tested in the course of the com-
puter experiment reported in [43]. It was found to converge in fewer iterations
than the full or reduced Levenberg-Marquardt fit, but given its higher cost per
iteration the overall improvement was doubtful. On the other hand, if this algo-
rithm diverges (along the ‘escape’ valley described in the previous chapter), then
it moves very slowly compared to the full version of the Levenberg-Marquardt
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circle fit. Therefore, the modified scheme presented above does not appear to be
practical.

Further modification. It leads, however, to yet another reduction scheme,
which is very interesting. Recall that the canonical Gauss-Newton method sup-
presses the second order partial derivatives of the individual terms gi(a) during
the calculation of the Hessian, cf. (4.8) and (4.9). In that spirit, let us neglect
the second order partial derivatives ∂2r̄/∂a2, ∂2r̄/∂b2, and ∂2r̄/∂a ∂b in the com-
putation of our Hessian (4.27). This eliminates the last term in each of the three
formulas of (4.27), and now the matrix N reduces to

(4.29) N0 =

[
1− ū2 −ūv̄
−ūv̄ 1− v̄2

]
.

The good news is that the matrix N0, unlike N in (4.28), is always positive
semi-definite. Indeed, using Jensen’s inequality gives

detN0 = 1− ū2 − v̄2

≥ 1− uu− vv = 0.

In fact, the matrix N0 is positive definite unless the data points are collinear.
Now, let us further simplify matters by setting λ = 0, i.e. by going back to

the old fashioned Gauss-Newton from the modern Levenberg-Marquardt. Then
the vector h = (h1, h2)

T will be the solution of

N0h = −1

2
∇F1.

In coordinate form, this equation is[
1− ū2 −ūv̄
−ūv̄ 1− v̄2

] [
h1

h2

]
=

[
−a− ūr̄
−b− v̄r̄

]
.

Solving this system and computing the next iteration

(anew, bnew) = (a, b) + (h1, h2)

gives

(4.30) anew = −ūR, bnew = −v̄R

where we use notation

(4.31) R =
aū + bv̄ + r̄

1− ū2 − v̄2

(there is a good reason to denote this fraction by R, as we will reveal in the next
section). Hence we obtain a simple iterative procedure (4.30)–(4.31).

This algorithm does not seem promising since the Gauss-Newton scheme,
without the Levenberg-Marquardt correction, does not guarantee convergence.
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Miraculously, the above method turns out to be very robust, as we will see in the
next section.

4.8. Späth algorithm for circles

An original method for circle fitting was proposed by Späth in 1996, see
[170, 171]. First, he enlarged the parameter space.

Use of latent parameters. For each i, he denotes by (x̂i, ŷi) the closest
point on the circle to the data point (xi, yi). The point (x̂i, ŷi) can be thought of
as the best estimate of the ‘true’ point on the circle whose noisy observation is
(xi, yi). The points (x̂i, ŷi) are sometimes called the data correction [95]. Each
point (x̂i, ŷi) can be specified by an angular parameter ϕi so that

x̂i = a + R cos ϕi, ŷi = b + R sin ϕi

In addition to the three parameters a, b, R describing the circle, Späth proposes to
estimate n angular parameters ϕ1, . . . , ϕn specifying the data correction points.
The objective function then takes form

F =
n∑

i=1

(xi − x̂i)
2 + (yi − ŷi)

2

=
n∑

i=1

(xi − a−R cos ϕi)
2 + (yi − b−R sin ϕi)

2(4.32)

It now depends on n+3 parameters (a, b, R, ϕ1, . . . , ϕn). Such an enlargement of
the parameter space has been used by some other authors [67].

Alternating minimization steps. The main idea of Späth [170, 171] is
to ‘separate’ the circle parameters from the angular parameters and conduct
the minimization of F alternatively with respect to (a, b, R) and with respect to
(ϕ1, . . . , ϕn). If we fix the angular parameters (ϕ1, . . . , ϕn), the function F will be
a quadratic polynomial with respect to a, b, R and so its minimum is easily found
by setting its partial derivatives ∂F/∂a, ∂F/∂b, ∂F/∂R to zero and solving the
corresponding system of linear equations. For brevity, denote

(4.33) ui = cos ϕi, vi = sin ϕi

in (4.32). The differentiation of F and simple manipulations yield

a + ūR = 0

b + v̄R = 0

ūa + v̄b + R = xu + yv,
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where we again assumed that x̄ = ȳ = 0, i.e. the data set is centered. Solving
the above system gives

(4.34) a = −ūR, b = −v̄R

and

(4.35) R =
xu + yv

1− ū2 − v̄2

We emphasize that the parameters ϕ1, . . . , ϕn are fixed at this stage and the
function F is being minimized only with respect to a, b, R. Since it is a quadratic
polynomial, the above solution provides the global minimum of F with respect to
a, b, R.

Let us now fix a, b, R (thus we fix the circle!) and find the minimum of F with
respect to ϕ1, . . . , ϕn. This turns out to be a simple geometric exercise. In the
expression (4.32), only the i-th summand depends on ϕi for each i. Hence the pa-
rameters ϕ1, . . . , ϕn can be decoupled: each ϕi is determined by the minimization
of

d2
i = (xi − a−R cos ϕi)

2 + (yi − b−R sin ϕi)
2

i.e. by the minimization of di, the distance between the data point (xi, yi) and
the variable point (a + R cos ϕi, b + R sin ϕi) on the circle. This minimum is
reached when one takes the point on the circle closest to (xi, yi), and that point
will determine the value of ϕi. It is easy to see that

(4.36) cos ϕi =
xi − a√

(xi − a)2 + (yi − b)2
, sin ϕi =

yi − b√
(xi − a)2 + (yi − b)2

Again, this gives the global minimum of F with respect to ϕi (for each i), assuming
that a, b, R are fixed.

The Späth algorithm then performs alternating global minimizations of F .
First it finds the global minimum of F with respect to ϕ1, . . . , ϕn keeping a, b, R
fixed, then it finds the global minimum of F with respect to a, b, R keeping
ϕ1, . . . , ϕn fixed, and so on. Since at each step a global minimum of F is found,
the value of F must decrease all the time. This is a very attractive feature of the
algorithm – it can never go wrong!

Combining the two steps into one. We now turn to the implementation
of the Späth method. It may look like we have to keep track of n+3 parameters,
and in fact Späth provides [170] detailed instructions on how to compute ϕi’s.
However, a closer look at the procedure reveals that we do not need the angles ϕi,
we only need ui = cos ϕi and vi = sin ϕi, and these are easy to compute via (4.36),
or equivalently via (4.19)–(4.21). Therefore, the first step of the algorithm—the
minimization of F with respect to ϕ1, . . . , ϕn keeping a, b, R fixed—reduces to
the simple computation of ui and vi defined by (4.19)–(4.21).
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1. Initialize (a0, b0, R0) and compute F0 = F(a0, b0, R0).
2. Assuming that (ak, bk, Rk) are known, compute ri, ui, vi for all i,

then compute averages r̄, ū, v̄.
3. Update the parameters: first Rk+1 = (akū + bkv̄ + r̄)/(1− ū2 − v̄2),

then ak+1 = −ūRk+1 and bk+1 = −v̄Rk+1.
4. If (ak+1, bk+1, Rk+1) are close to (ak, bk, Rk), then terminate the procedure,

otherwise increment k and return to Step 2.

Table 4.4. Späth algorithm.

Now each iteration of the Späth algorithm (originally, consisting of the two
steps described above) can be executed as follows: one computes ui, vi by using
the circle parameters a, b, R from the previous iteration and then updates a, b, R
by the rules (4.34)–(4.35). There is no need to keep track of the additional angular
parameters.

It may be noticed that the Späth algorithm now looks similar to our iterative
procedure (4.30)–(4.31) developed in the end of the previous section. A close
inspection reveals that they are in fact identical. The expression (4.31) for R
(which was just an auxiliary factor in the previous algorithm) is equivalent to
(4.35), as one can check directly by using algebra.

Thus, in fact we ‘accidentally’ arrived to the Späth algorithm in the previous
section based on the entirely different ideas. Moreover, our expressions (4.30)–
(4.31) are simpler to implement than (4.34)–(4.35).

x

y

Figure 4.3. Alternative minimization with respect to x and y, separately.
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Advantages and drawbacks. The Späth algorithm thus has two attrac-
tive features: the absolute reliability (every iteration decreases the value of the
objective function F) and a low cost per iteration. One might expect that each
iteration takes a big step to the minimum of F since it performs a global mini-
mization of F with respect to one or the other group of parameters, alternatively.
Unfortunately, such algorithms are notoriously slow: when they move along a val-
ley that stretches ‘diagonally’ in the joint parameter space, every iteration takes
just a tiny step.

To illustrate this effect, consider a function f(x, y) whose contour map (the
set of level curves) happens to define a long, narrow valley at some angle to the
coordinate axes (Figure 4.3). If one minimizes f alternatively, with respect to x
and with respect to y, then the only way “down the length of the valley” is by
a series of many tiny steps. This explanation is borrowed from Section 10.5 of
[151].
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Figure 4.4. The Späth algorithm with initial guess at (1, 1)
takes 200 iterations (diamonds) to converge, while the Levenberg-
Marquardt circle fit makes only 7 iterations (blue stars); here 20
simulated points are marked by crosses.

It was noticed in [3] that the Späth algorithm often takes 5-10 times more
iterations to converge than the Levenberg-Marquardt method. Experiments re-
ported in [43] reveal an even more dramatic difference. A typical example is
shown in Figure 4.4, where 20 points are randomly generated along a 130o arc of
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the unit circle x2+y2 = 1 with a Gaussian noise at level σ = 0.05. The Levenberg-
Marquardt fit starts at a = b = 1 and converges to the (unique) minimum of F
at â = 0.028 and b̂ = −0.031 in 7 iterations (marked by stars). The Späth al-
gorithm, on the contrary, took almost 200 iterations (marked by diamonds) to
converge.

4.9. Landau algorithm for circles

Yet another algorithm for circle fitting was proposed by Landau [119] and
soon became quite popular; see e.g., [124]. (Berman remarks [17] that this
algorithm has been known since at least 1961 when it was published by Robinson
[155], but in fact Robinson’s paper does not provide details of any algorithms.)

The idea of Landau is simple. The minimum of F corresponds to ∇F = 0,
which is, in the notation of (4.22), equivalent to JTg = 0. This can be written
by using our ‘sample mean’ notation as

a = −ūR

b = −v̄R

R = r̄,

where we again assume that x̄ = ȳ = 0. Landau simply proposes the iterative
scheme

Rnew = r̄

anew = −ūRnew(4.37)

bnew = −v̄Rnew

where r̄, ū, v̄ are computed by using the previous iteration. This is a variant of
the so called fixed point method, see below.

Fixed point schemes. A fixed point scheme is one of the simplest ways of
solving nonlinear equations. Given an equation f(x) = 0, one first transforms it
into x = g(x) with some function2 g(x), and then tries to estimate a root, call
it x∗, by iterations xn+1 = g(xn). If this method converges at all, its limit is
necessarily a root of x = g(x), i.e. f(x) = 0.

However, the convergence depends on the function g. The method converges
to x∗ if |g′(x∗)| < 1 and diverges if |g′(x∗)| > 1 (similar conditions exist for
multidimensional variables x ∈ Rn, see [112]). Since such conditions are in
practice hard to verify, the method is generally not very reliable. In other words,
one has to carefully find a representation x = g(x) of the given equation f(x) = 0
for which |g′| < 1 at and near the desired root.

2For example, the equation x3 − 10 = 0 can be transformed into x = x3 + x − 10 or
x = 10/x2. There are infinitely many ways to write it as x = g(x) with different g’s.
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Figure 4.5. The Landau algorithm with initial guess at (1, 1)
takes 700 iterations (diamonds) to converge, while the Levenberg-
Marquardt circle fit reaches the goal in 5 iterations (blue stars);
here 20 simulated points are marked by crosses.

Besides, the speed of convergence of a fixed point method is linear (unless
g′(x∗) = 0, which rarely happens), while the convergence of the Gauss-Newton
method and its Levenberg-Marquardt modification is nearly quadratic. The
linear convergence means that if θ̂k is the parameter approximation at the k’s
iteration and θ̂∗ = limk→∞ θk, then

‖θk+1 − θ̂∗‖ ≤ c‖θk − θ̂∗‖

with some constant c < 1.

Speed of convergence. Landau [119] has estimated the convergence con-
stant c for his method and showed that 0.5 ≤ c < 1. In fact, c ≈ 0.5 when the
data are sampled along the entire circle, c ≈ 0.9 when data are sampled along
half a circle, and c quickly approaches one as the data are sampled along smaller
arcs. In practice, the performance of the Landau algorithms (as is typical for
fixed point schemes) is very sluggish – it happens to be even slower than the
Späth method.

A typical example is shown in Figure 4.5, where 20 points are randomly
generated along a 130o arc of the unit circle x2 + y2 = 1 with a Gaussian noise at
level σ = 0.05. The Levenberg-Marquardt fit starts at a = b = 1 and converges to
the (unique) minimum of F at â = 0.014 and b̂ = −0.020 in 5 iterations (marked
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by stars). The Landau algorithm, on the contrary, took almost 700 iterations
(marked by diamonds) to converge.

The Späth and Landau methods sometimes take quite different routes to
converge to the minimum, see another example in Figure 4.6, where 20 points
are randomly generated along a 130o arc of the unit circle x2 + y2 = 1 with a
Gaussian noise at level σ = 0.05, and the initial guess is again a = b = 1. The
Levenberg-Marquardt circle goes straight to the limit point and converges in 5
iterations. The Späth method (diamonds) approaches the limit point from the
right in about 100 iterations, and the Landau method (circular markers) comes
from the left (taking about 400 steps).
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Figure 4.6. Three algorithms converge along different routes.

Last remarks. We only described the most popular algorithms for geometric
circle fitting. Some authors use a ‘heavy artillery’, such as Nelder-Mead simplex
method [68]. Others used various heuristics, such as Fisher scoring [33]. We do
not include them here.

4.10. Divergence and how to avoid it

The previous sections reviewed the most popular geometric circle fitting al-
gorithms. They perform well when the initial guess is chosen close enough to the
minimum of the objective function F . They can also cope with the initial guesses
picked far from the minimum (although sometimes iterations move slowly). But
there is one condition under which all of them fail.

Divergence in the escape valley. The failure occurs if the initial guess (or
one of the iterations) falls into the ‘escape’ valley described in Section 3.7. Then
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all the iterative algorithms are driven away from the minimum of F and diverge.

An example is shown in Figure 4.7, where 20 points are randomly generated
along a 130o arc of the unit circle x2 + y2 = 1 with a Gaussian noise at level
σ = 0.05. The Levenberg-Marquardt fit and the Späth and Landau methods
start at a = 1.1 and b = 0.1. All of them move in the wrong direction (to the
right) and diverge (the figure shows only the initial stage of divergence). The
reason for their failure is that the initial guess happens to be in the escape valley
that descends to the right, all the way to the horizon. (The divergence of the
Landau algorithm may have no clear cause, as it is purely heuristic and does not
use the derivatives of the objective function F , but it follows suit anyway.)

We cannot blame iterative algorithms for their divergence here; they do what
they are supposed to: detect the shape of the function at the current locality and
move in the direction where the function seems to decrease. They have no way
of knowing that they are in the escape valley stretching to the horizon, while the
true minimum is left behind, ‘over the ridge’.
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Figure 4.7. Three algorithms move to the right, away from the
true circle (along the ‘escape’ valley) and diverge. The Levenberg-
Marquardt circle fit ‘dashes’ fast, in three steps (marked by blue
stars) it jumps beyond the picture’s boundaries. The Späth method
makes 50 steps (red diamonds) before escaping, and the Landau
scheme crawls in 1000 steps (green circular markers that quickly
merge into a solid strip) before reaching the top edge; here 20
simulated points are marked by crosses.
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We have established in Section 3.7 that the escape valley exists for practically
every data set. However, if the data points are sampled along the full circle or
a large arc, then the escape valley lies far from the true circle, and the iterative
algorithms can operate safely. On the other hand, if the data points are clustered
along a small arc, then the escape valley is right next to the data.

For example, the set shown in Figure 3.1 is sampled along an arc (solid line)
whose center lies above the x axis. Choosing the initial center below the x axis
places the iterative procedure into the escape valley and sends it away to infinity.

One way to guard the iterative procedures against the escape valley is to use
the rules for ‘handling the singular cases’ described in Section 3.9. Alternatively,
the iterative scheme can be initialized by any algebraic circle fit presented in the
next section (which is the most common strategy in practice). Then the initial
guess is almost automatically placed on the ‘right’ side of the data set and the
procedure avoids the escape valley (however, there are some exotic exceptions;
see the W-example in Section 5.13).

On the other hand, if one has to use ‘bad’ (arbitrarily chosen) initial guesses
(for example, we had to do this in our experiment determining the typical number
of local minima, cf. Section 3.6), then one is basically at the mercy of the initial
choice.

Chernov-Lesort algorithm. In an attempt to bypass the divergence prob-
lem Chernov and Lesort [43] developed a rather unusual circle fitting algorithm,
which converges to a minimum of the objective function from any (!) starting
point. The trick is to adopt a different parametrization scheme in which escape
valleys simply do not exist! Recall that the algebraic equation

A(x2 + y2) + Bx + Cy + D = 0

with four parameters A, B, C,D satisfying the constraint

(4.38) B2 + C2 − 4AD = 1

describes all circles on the xy plane and, in addition, all straight lines. Circles
correspond to A 6= 0 and lines to A = 0.

We have proved in Section 3.2 that if the data set lies within a ‘bounding
box’ B, then the minimum of the objective function F is restricted to a bounded
region in the parameter space

(4.39) |A| < Amax, |B| < Bmax, |C| < Cmax, |D| < Dmax

where Amax, Bmax, Cmax, Dmax are determined by the size and the location of the
box B and by the maximal distance between the data points, dmax, cf. Theo-
rem 3.1. Therefore, there are no ‘infinitely long’ valleys in the A, B, C,D pa-
rameter space along which the function F decreases all the way to the horizon,
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which potentially cause divergence of iterative algorithms. The objective func-
tion F(A, B, C,D) actually growth as the point (A, B, C,D) moves away from
the region (4.39) in any direction.

Now one can minimize F in the A, B, C,D parameter space by using any
general algorithm for constrained or unconstrained optimization (in the latter
case one has to eliminate one parameter, see below).

Chernov and Lesort [43] utilized the unconstrained Levenberg-Marquardt
scheme. They introduced a new parameter, an angular coordinate θ defined
by

B =
√

1 + 4AD cos θ, C =
√

1 + 4AD sin θ,

so that θ replaces B and C. We refer the reader to [43] for further details. A
MATLAB code of this algorithm is available from [84].

The Chernov-Lesort algorithm is remarkable for its 100% convergence rate
(verified experimentally under various conditions, see [43]). But otherwise it is
rather impractical. First, it involves complicated mathematical formulas. Second,
its cost per iteration is about 4 times higher than the cost of one iteration for
other geometric fitting algorithms. Third, it must be safeguarded against various
singularities of the objective function (points in the parameter space where F fails
to have derivatives); see details in [43]. Last, but not the least, this algorithm
heavily depends on the choice of the coordinate system on the data plane, see
Section 4.11.

4.11. Invariance under translations and rotations

In Section 1.3 we determined that the geometric fitting line was invariant
under translations, rotations, and similarities, but not under general scalings.
This invariance is essential as it guarantees that the best fitting line is independent
of the choice of the coordinates frame in the xy plane.

Invariance of the best fitting circle. Here we extend the above property
to circles. We say that a circle fit is invariant under translations Tc,d, defined by
(1.18), if changing the coordinates of the data points by (1.18) leaves the fitting
circle unchanged, i.e. its equation in the new coordinates will be

(x + c− a)2 + (y + d− b)2 = R2.

Similarly we define the invariance under rotations (1.19) and scaling (1.21).
It is quite clear that the best fitting circle, which minimizes the sum of squares

of the geometric distances (3.1), is invariant under translations and rotations, but
again, not under scalings (unless both coordinates x and y are scaled by the same
factor). Thus the fitting circle does not depend on the choice of the coordinate
frame.
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Stepwise invariance of circle fitting algorithms. However, now we need
more than just the independence of the best fitting circle from the choice of
the coordinate system. Since in practice that circle is obtained by an iterative
algorithm, we would like every iteration be constructed independently of the
coordinate frame.

In that case the choice of the coordinate system truly would not matter.
Otherwise the sequence of circles generated by the algorithm would depend on the
coordinate frame; in some frames the convergence would be faster than in others;
in some frames the procedure would converge to the global minimum, while in
others – to a local one, and yet in others it would diverge (as in the previous
section). Moreover, since in practice we have to stop the iterative procedure
before it reaches its limit, the exact circle returned by the procedure would really
depend on the choice of the coordinate frame. This is certainly an undesirable
feature.
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Figure 4.8. Three different itineraries of the Chernov-Lesort procedure.

Example. The only circle fitting algorithm discussed in this chapter which
lacks the above invariance property is Chernov-Lesort (Section 4.10); Figure 4.8
illustrates its performance. 20 points (marked by crosses) are randomly generated
along a semi-circle x2 + y2 = 1, x ≥ 0, with a Gaussian noise at level σ = 0.05.
The Chernov-Lesort algorithm starts at the point (2, 1), and converges to the
global minimum of the objective function at (−0.05,−0.01).

Note that the starting point is clearly in the escape valley, so that every other
fit presented in this chapter would diverge to infinity. Only the Chernov-Lesort
fit converges to the minimum of the objective function here.

But it takes a different path to the limit every time we translate or rotate the
coordinate system. Once it went straight to the limit (the red solid line). Another
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time it overshot and landed near (−1,−2), then it took a detour returning to the
limit (the blue dashed line). Yet another time it leaped far along the negative x
axis and then slowly came back (the green dotted line). The number of iterations
varies from 5 to 20-25, depending on the choice of the coordinate frame.

Though we emphasize that the Chernov-Lesort fit converges to the minimum
of the objective function from any starting point and in any coordinate system.

Next we turn to algorithms which are translation and rotation invariant.

Invariance of general minimization schemes. Since most of our algo-
rithms are based on Gauss-Newton method and its modifications, let us examine
the invariance issue in general. First, all the classical minimization algorithms
(steepest descent, Newton-Raphson, Gauss-Newton, Levenberg-Marquardt) in-
volve derivatives of the objective function, hence their iterations are invariant
under translations of the coordinate frame.

To examine the invariance under rotations, or more generally under linear
transformations, let us transform the coordinates a = (a1, . . . , ak) in the under-
lying space Rk, cf. (4.1), by a = Ab, where A denotes an arbitrary nonsingular
matrix and b = (b1, . . . , bk) new coordinates. Then by the chain rule

∇bG(Ab) = AT ∇aG(Ab).

Therefore the coordinates of the direction of the steepest descent are transformed
by (AT )−1, while the data coordinates are transformed by A. We have the desired
invariance if and only if AT = cA−1, c 6= 0, i.e. iff A is a scalar multiple of an
orthogonal matrix.

One can arrive at this intuitively by noticing that the direction of the steepest
descent must be orthogonal to the level surface of the objective function, hence
the linear transformation A must preserve angles.

For the Newton-Raphson method, equations (4.2) take form

Db = ∇bG(Ab) = ATDa

and

Hb = ∇2
bG(Ab) = ATHaA,

hence (4.4) in the new coordinates b takes form

ATDa + ATHaAhb = 0.

We cancel AT and conclude that ha = Ahb, i.e. we have the desired invariance
for any nonsingular matrix A. Intuitively, this fact is clear, because the method
is based on the second order approximation (of the objective function), which
survives any linear transformations.

For the Gauss-Newton method (Section 4.2) we have, in a similar way,

∇bgi(Ab) = AT∇agi(Ab),
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thus equations (4.7) and (4.9) take form

Db = ATDa and H�
b = ATH�

aA.

Then (4.10) takes form

(4.40) ATDa + ATH�
aAhb = 0.

Canceling AT yields ha = Ahb, i.e. we again have the invariance for any nonsin-
gular matrix A.

The Levenberg-Marquardt correction (Section 4.2) replaces the matrix H�

with (H� + λI), hence equation (4.40) becomes

ATDa + (ATH�
aA + λI)hb = 0.

If A is an orthogonal matrix, then I = ATA, and we again arrive at ha = Ahb,
i.e. the desired invariance. Otherwise the invariance fails. This is no surprise as
the Levenberg-Marquardt is a hybrid of Gauss-Newton and steepest descent, and
the latter is invariant only for orthogonal A’s.

Proof of invariance of circle fitting algorithms. As a result of our
general analysis, the Levenberg-Marquardt method is always invariant under or-
thogonal transformations (in particular under translations and rotations). When
we fit circles, we can translate or rotate the coordinate frame in the xy (data)
plane; then in the 3D parameter space with coordinates (a, b, R) we translate
or rotate the frame in the ab plane but keep the R axis fixed. Thus we deal
with a (particular) translation or rotation of the coordinate frame in R3, and so
the Levenberg-Marquardt algorithm will be invariant under it, as we established
above.

The Späth algorithm and Landau algorithm are also invariant under transla-
tions and rotations of the coordinate frame in the xy (data) plane. In fact the
invariance under translations is immediate as both algorithms require moving the
origin to the centroid of the data set.

To check the invariance under rotation, one should observe that rotating the
coordinate frame through angle θ results in the rotation of every (ui, vi) vector, cf.
(4.20)–(4.21), through −θ; thus their mean vector (ū, v̄) will also rotate through
−θ. It is now quite clear from(4.34) and (4.37) that the vector (a, b) will rotate
accordingly; we invite the reader to verify the details of this argument as an
exercise.

4.12. The case of known angular differences

In Section 4.8 we used the angular coordinates ϕ1, . . . , ϕn and wrote the ob-
jective function as

(4.41) F =
n∑

i=1

(xi − a−R cos ϕi)
2 + (yi − b−R sin ϕi)

2
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where ϕi’s were treated as unknowns, in addition to the circle parameters (a, b, R).
Minimization of (4.41) with respect to all its variables was the main idea of the
Späth algorithm.

Berman’s model. In some applications, the differences ϕi+1−ϕi between the
angular coordinates of successive data points are known. This information can
be used to simplify the objective function (4.41), after which the model becomes
entirely linear, leading to explicit formulas for parameter estimates.

Indeed, if we denote the known differences by

τi = ϕi − ϕ1 =
i−1∑
j=1

ϕj+1 − ϕj

then we can represent ϕi = ϕ + τi, where ϕ = ϕ1 is the only unknown angular
parameter. Now the objective function (4.41) takes form

(4.42) F =
n∑

i=1

(xi − a− α cos τi + β sin τi)
2 + (yi − b− α sin τi − β cos τi)

2,

where

(4.43) α = R cos ϕ and β = R sin ϕ

can be treated as auxiliary parameters that (temporarily) replace R and ϕ.
Since F is a quadratic function in its unknowns a, b, α, β, the model becomes

entirely linear. The estimates of a, b, α, β can be easily found by setting the partial
derivatives of F to zero and solving the resulting linear system of 4 equations
with 4 unknowns. We will not provide details as they are elementary.

Lastly, the radius R (and the base angle ϕ, if necessary) can be found from
equations (4.43). There is no need for complicated iterative schemes. This model
was proposed and solved in 1983 by Berman [15].

Applications of Berman’s model. Berman [15] pointed out two particular
applications where the angular differences are indeed known:

(a) The calibration of an impedance measuring apparatus in microwave en-
gineering;

(b) The analysis of megalithic sites in Britain, in which archaeologists need
to fit circles to stone rings.

It is interesting that so much different examples have this important feature in
common.

Berman, Griffiths and Somlo [15, 19, 20] present a detailed statistical anal-
ysis of the resulting parameter estimates for the model with known angular dif-
ferences.

Further extensions. Recently Yin and Wang [194] incorporated heteroscedas-
tic errors into Berman’s model; they assumed that the disturbances in the x and
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y directions had different (and unknown) variances. This type of data also arise
in microwave engineering.

Wang and Lam [188] extend Berman’s model to simultaneous fitting of several
circles, where one tests the hypothesis that several round objects have identical
size. Such problems arise in quality control of manufactured mechanical parts.

It seems that the situation with known angular differences is not so uncommon
as it may appear, but it is still a special case of the general circle fitting problem.



CHAPTER 5

Algebraic circle fits

Recall that we have divided all practical solutions to the circle fitting problem
into two large groups: (A) geometric fits that minimize the geometric (orthogo-
nal) distances from the data points to the circle and (B) algebraic fits that min-
imize some other, mostly algebraic expressions, cf. the preamble to Chapter 4.
Here we deal with type B methods.

Why are the type B methods of interest?
First, geometric fits (i.e. type A methods) are iterative, they require an ini-

tial guess be supplied prior to their work; their performance greatly depends
on the accuracy of the initial guess. Algebraic fits are non-iterative inexpensive
procedures that provide a good initial guess.

Second, some applications are characterized by mass data processing (for
instance, in high energy physics millions of circular-shaped particle tracks may
come from an accelerator and need be processed). Under such conditions one can
rarely afford slow iterative geometric fits, hence a non-iterative algebraic fit may
very well be the only option.

Last but not the least, well designed algebraic fits (such as Taubin’s and
Pratt’s algorithms described in this chapter) appear to be nearly as accurate,
statistically, as geometric fits (this will be confirmed by our detailed error analysis
in Chapter 7). In many applications a good algebraic fit would do an excellent
job, and subsequent geometric fits would not make noticeable improvements.

5.1. Simple algebraic fit (K̊asa method)

Perhaps the simplest and most obvious approach to the circle fitting problem
is to minimize

(5.1) F1(a, b, R) =
n∑

i=1

[
(xi − a)2 + (yi − b)2 −R2

]2
.

In other words, we are minimizing F1 =
∑

f 2
i , where

(5.2) fi = (xi − a)2 + (yi − b)2 −R2.

Clearly, fi = 0 if and only if the point (xi, yi) lies on the circle; also, fi is small
if and only if the point lies near the circle. Thus, minimizing (5.1) sounds like a

101
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reasonable idea. Some authors [62, 67, 150] call fi the algebraic distance from
the point (xi, yi) to the circle (x− a)2 + (y − b)2 + R2 = 0.

The derivatives of the objective function (5.1) are nonlinear with respect to
a, b, R, but a simple change of parameters makes them linear. Let

(5.3) B = −2a, C = −2b, D = a2 + b2 −R2.

Then we get

(5.4) F1 =
n∑

i=1

(zi + Bxi + Cyi + D)2

where we also denote zi = x2
i + y2

i for brevity.
Now differentiating F1 with respect to B, C, D yields a system of linear equa-

tions

xx B + xy C + x̄ D = −xz

xy B + yy C + ȳ D = −yz(5.5)

x̄ B + ȳ C + D = −z,

where we again use our ‘sample mean’ notation

xx = 1
n

∑
x2

i , xy = 1
n

∑
xiyi, etc.

Solving this system by some methods of linear algebra (see, e.g., below) gives
B, C, D, and finally one computes a, b, R by

(5.6) a = −B

2
, b = −C

2
, R =

√
B2 + C2 − 4D

2
.

This algorithm is very fast, it can be accomplished in 13n + 35 flops if one
solves (5.5) directly. It actually costs less than one iteration of the Gauss-Newton
or Levenberg-Marquardt methods (Chapter 4). We note, however, that a direct
solution of (5.5) is not the best option; the system (5.5) is an analogue of
normal equations that are known to cause numerical instability; a stable solution
is described in the next section.

The above algebraic fit has been proposed in the early 1970s by Delogne [54]
and K̊asa [108], and then rediscovered and published independently by many au-
thors [11, 24, 25, 36, 51, 53, 125, 129, 136, 170, 180, 193, 197]. Now it is
called Delogne–K̊asa method (see [196]) or briefly K̊asa method (see [52, 159, 184] ),
named after the first contributors. (It seems that most authors prefer the short
name ‘K̊asa method’, so we follow this tradition, too.)

The simplicity and efficiency of the K̊asa algorithm are very attractive fea-
tures. Many researchers just fall in love with it at first sight. This method is so
popular in the computer science community that we feel obliged to present its
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detailed analysis here. Even though it would not be a method of our choice, we
will methodically highlight its strong and weak points.

5.2. Advantages of the K̊asa method

The use of K̊asa algorithm actually has many benefits.
First, if the points (xi, yi) happen to lie on a circle, the method finds that

circle right away. (In contrast, geometric fits would at best converge to that circle
iteratively.)

In statistical terms, the K̊asa method is consistent in the small-noise limit
σ → 0 (introduced in our discussion in Section 2.5), i.e. the estimates of the
parameters (a, b, R) converge to their true values as σ → 0. In fact, the K̊asa
fit is asymptotically efficient (optimal) in that limit, to the leading order; see
Chapter 7.

Geometric descriptions. Second, the K̊asa method can be defined geomet-
rically in several ways. For example, observe that πfi, where fi is given by (5.2),
is the difference between the areas of two concentric circles, both centered on
(a, b): one has radius R and the other passes through the observed point (xi, yi),

i.e. has radius ri =
√

(xi − a)2 + (yi − b)2. In other words, πfi is the area of the
ring between the fitted circle and the observed point. Thus the K̊asa method
minimizes the combined area of such rings; this interesting fact was noted in
[180].

d

D

x

i

i yi,( )

i

Figure 5.1. The distance di from (xi, yi) to the nearest point and
Di to the farthest point on the circle.

Another geometrical definition, see [51], results from the expansion

(5.7) fi = (ri −R)(ri + R), ri =
√

(xi − a)2 + (yi − b)2.

Here the first factor di = ri −R is the distance from (xi, yi) to the nearest point
on the circle (a, b, R), while the second factor Di = ri + R is the distance from
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(xi, yi) to the farthest point on the circle. Thus the K̊asa method minimizes

(5.8) F1 =
n∑

i=1

d2
i D

2
i .

Chord method. The K̊asa fit is also related to the chord method proposed
in [184, 193]. While not practically efficient, this method is worth mentioning
due to its relevance to the K̊asa fit.

Observe that if any two points Pi = (xi, yi) and Pj = (xj, yj) lie on the fitting
circle, then the perpendicular bisector Lij of the chord PiPj passes through its
center, see Figure 5.2. Thus one can find the best center (a, b) by minimizing

Fch =
∑

1≤i<j≤n

wijD
2
ij,

where Dij denotes the distance from (a, b) to the bisector Lij and wij is a certain
weight, see below.

P

P

(a,b)

L ij

i

j

Figure 5.2. Perpendicular bisector Lij of the chord PiPj passes
through the center (a, b).

By elementary geometry, Fch is a quadratic function of a and b:

(5.9) Fch =
∑

1≤i<j≤n

wij

[
a(xi − xj) + b(yi − yj)− 1

2
(x2

i − x2
j + y2

i − y2
j )

]2

(xi − xj)2 + (yi − yj)2
,

so it can be easily minimized provided wij are specified. The choice of wij is
based on the following considerations. For shorter chords PiPj, the distance Dij

is less reliable, thus their influence should be suppressed. Umbach and Jones
[184] propose the weight proportional to the squared chord’s length:

(5.10) wij = |PiPj|2 = (xi − xj)
2 + (yi − yj)

2.

This choice of the wij conveniently cancels the denominator in (5.9) making the
computations even simpler. Of course, generally speaking, the chord method is
very impractical: as there n(n − 1)/2 chords joining n data points, the method
takes O(n2) flops, while all conventional circle fits require O(n) flops.
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With weights defined by (5.10), the chord method happens to be equivalent
to the K̊asa algorithm, they produce the same circle center (a, b); this remarkable
relation was noted and verified by Umbach and Jones [184].

Invariance under translations and rotations. We see now that the K̊asa
method can be defined geometrically (actually, in three different ways, as de-
scribed above). This fact implies that the resulting fit is invariant under transla-
tions and rotations, which is a very important feature of any curve fitting algo-
rithm, cf. Section 4.11. Therefore, without loss of generality, we can center the
data set to ensure x̄ = ȳ = 0 and rotate the coordinate axes to ensure xy = 0
(this will make the system (5.5) diagonal).

Existence and uniqueness. Next we investigate the existence and unique-
ness of the K̊asa fit (5.1). The matrix of coefficients of the system (5.5) is XTX,
where

(5.11) X =

 x1 y1 1
...

...
...

xn yn 1


is the n× 3 ‘data matrix’; thus the system (5.5) is always positive semi-definite.

It is singular if and only if there exists a non-zero vector u = (p, q, r) such
that Xu = 0, i.e. pxi + qyi + r = 0 for all i. This means precisely that the data
points (xi, yi) are collinear. Hence, unless the data are collinear, the K̊asa system
(5.5) is positive definite and admits a unique solution.

In the collinear case, the K̊asa method has multiple solutions, see below.

Implementation. Practically, one can solve (5.5) by Cholesky factorization;
this is perhaps the most efficient way, but it may lead to unnecessarily large
round-off errors if X is nearly singular. A numerically stable (albeit somewhat
more expensive) approach is to rewrite (5.5) as

(5.12) XTXA = −XTZ

where A = (B, C, D)T denotes the parameter vector and Z = (z1, . . . , zn)T . Then
the solution of (5.12) is

A = −X−Z,

where X− denotes the Moore-Penrose pseudoinverse, and it can be computed by
the QR decomposition or SVD of the matrix X, see details in Remark 4.2. The
SVD solution will work smoothly even in the singular case, where detXTX = 0.

Multiple solutions. In the singular case (collinear data) the system (5.5),
i.e. (5.12), has multiple solutions. Indeed, we can rotate and translate the coor-
dinate frame to enforce y1 = · · · = yn = 0 as well as x̄ = 0. It is then easy to
see that the system (5.5) determines a uniquely, but b is left unconstrained. The
SVD-based algorithm should return the so called ‘minimum-norm’ solution.
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Nievergelt [137] points out, however, that in the collinear data case the SVD
solution is no longer invariant under translations. He proposes some modifica-
tions to enforce invariance; see [137] for more details.

Square root issue. Lastly, note that in any case (singular or not) we have

(5.13) B2 + C2 − 4D ≥ 0

thus the evaluation of the radius R in (5.6) does not run into complex numbers.
Indeed, by a translation of the coordinate frame we can ensure that x̄ = ȳ = 0,
hence the third equation in (5.5) implies D = −z̄ ≤ 0, so (5.13) holds.

5.3. Drawbacks of the K̊asa method

Experimental evidence of heavy bias. Now we turn to practical perfor-
mance of the K̊asa method. Figure 5.3 shows four samples of 20 random points
each; they are generated along different segments of the unit circle x2 + y2 = 1:
(a) full circle, (b) half circle, (c) quarter circle, and (d) 1/8 of a circle. In each
case a Gaussian noise is added at level σ = 0.05.
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Figure 5.3. Four samples, each of 20 points (marked by crosses),
along different arcs of the unit circle x2 + y2 = 1. The K̊asa fit is
the solid circle; the geometric fit is the dotted circle.
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Figure 5.3 demonstrates that the K̊asa fit is practically identical to the geo-
metric fit when the data are sampled along the full circle. It returns a slightly
smaller circle than the geometric fit does, when the data are sampled along a
semicircle. The K̊asa circle gets substantially smaller than the best one for data
confined to a 90o arc. When the data are clustered along a 45o arc, the K̊asa
method returns a badly diminished circle, while the geometric fit remains quite
accurate. On smaller arcs, the K̊asa method nearly breaks down (see a rather
extreme example in Figure 5.4 and a more comprehensive numerical experiment
in Section 5.7).
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Figure 5.4. 13 data points (crosses) form a symmetric pattern
stretching along a horizontal line (the x axis). The best fit is obvi-
ously the x axis itself; the K̊asa method returns a circle that is far
from the best fit.

Theoretical analysis of heavy bias. Unfortunately, it is a general fact:
the K̊asa method substantially underestimates the radius and is heavily biased
toward smaller circles when the data points are confined to a relatively small
arc; this tendency has been noticed and documented by many authors, see
[18, 45, 43, 42, 53, 67, 82, 137, 150, 159] and our Section 5.7.

The reason for this flaw of the K̊asa fit can be derived from (5.8). The method
minimizes the average product of the smallest distance di and the largest distance
Di (squared). Reducing the size of the circle may increase di’s but decrease Di’s,
thus the minimum of F1 may be attained on a circle that does not necessarily
minimize di’s but rather finds a best trade-off between di’s and Di’s.

To perform a more detailed analysis, observe that Di = di + 2R, hence the
K̊asa fit minimizes

(5.14) F1 =
n∑

i=1

d2
i (di + 2R)2.
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Now if the data points are close to the circle, we have |di| � R and

(5.15) F1 ≈ 4R2

n∑
i=1

d2
i .

Suppose the data are sampled along an arc of length L (subtending a small
angle α = L/R). Let (a, b, R) denote the parameters of the true circle, then
F1(a, b, R) ≈ 4R2nσ2. If one reduces the arc radius by a factor of 2, see Figure 5.5,
then the arc will be displaced by ∼ L2/R, thus distance from the data points to
the new arc will be of order σ + L2/R; hence the new value of F1 will be

F1 ≈ 4(R/2)2n(σ + L2/R)2.

The algorithm will favor the new circle of the smaller radius R/2 as long as
σ > L2/R = αL. Hence, the K̊asa method is subject to gross errors or breaking
down whenever σR > L2.

α

R

2

L

R/

Figure 5.5. The true arc (solid lines) and the arc after its radius
is halved (dashed lines).

Conclusions. To summarize, the K̊asa algorithm is perhaps the simplest,
fastest, and most elegant of all known circle fits. Its does an excellent job when-
ever the data points are sampled along a full circle or at least half a circle. It
also works fine if the data points lie very close to a circle, i.e. when σ ≈ 0.

However, the performance of the K̊asa method may substantially deteriorate
when the data points are sampled along a small arc, in which case it tends to
grossly underestimate the radius.

5.4. Chernov-Ososkov modification

In the early 1980s, Chernov and Ososkov [45] proposed a modification of the
K̊asa fit to improve its performance.

Modified objective function. Observe that it is the extra factor 4R2 in
(5.15) that is responsible for the impaired performance of the K̊asa method.
Chernov and Ososkov [45] suggest to get rid of that factor by minimizing a
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modified function F2 = (2R)−2F1, i.e.

(5.16) F2(a, b, R) = (2R)−2

n∑
i=1

[
(xi − a)2 + (yi − b)2 −R2

]2
.

This formula has some history. It was introduced in 1984, in [45], for the purpose
of fitting circular arcs to tracks of elementary particles in high energy physics.
In 1991, it was employed by Karimäki [106, 107] who called it a ‘highly precise
approximation’. In 1998, it was independently derived by Kanatani [96] in the
course of statistical analysis of circle fits.

Next, changing parameters a, b, R to B, C, D, as specified by (5.3) (i.e. as in
the K̊asa method) gives

F2 =
1

B2 + C2 − 4D

n∑
i=1

(zi + Bxi + Cyi + D)2

=
zz + 2Bxz + 2Cyz + 2Dz + B2xx + C2yy + 2BCxy + D2

B2 + C2 − 4D
.(5.17)

Here we assume, to shorten the above formula, that the data set has been centered
so that x̄ = ȳ = 0 (otherwise the numerator would contain two extra terms:
+2BDx̄ + 2CDȳ).

Reduction to a quartic equation. Observe that F2 is a quadratically
rational function of the unknown parameters. Chernov and Ososkov [45] set its
derivatives to zero, eliminated B and C from the resulting equations, and arrive
at a polynomial equation of degree 4 (i.e., a quartic equation) in D:

(5.18) D4 + a3D
3 + a2D

2 + a1D + a0 = 0,

where

a3 = 4z̄

a2 = 3xx2 + 3yy2 + 10xx yy − 4xy2 − zz

a1 = 2xz2 + 2yz2 − 4zz (xx + yy)(5.19)

a0 = 2xz2(xx + 3yy) + 2yz2(3xx + yy)− 8xz yz xy − zz(a2 + zz)

Newton-based solution of the quartic equation. Equation (5.18) may
have up to four different real roots, which are not easy to compute. However,
Chernov and Ososkov [45] notice that if one sets D = −z̄ (this is the value
furnished by the K̊asa method) as the initial guess and applies a standard New-
ton procedure to solve (5.18), then the latter always converges to the root that
corresponds to the minimum of (5.17).

Besides, the convergence is fast: it takes 3-5 iterations, on the average, to find
the desired root (with tolerance set to 10−12). It is important, though, that one
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uses the double-precision arithmetic to solve (5.18), as single precision round-off
errors tend to ruin the accuracy of the final estimates.

However, Chernov and Ososkov [45] did not provide a theoretical analysis of
their modification; in particular they did not prove that their Newton procedure
described above always converges to a root of (5.18), or that the root which it
finds always corresponds to the minimum of (5.16). These facts were proved much
later, in 2005, by Chernov and Lesort [43] based on the Pratt circle fit discussed
in the next section.

Application in high energy physics. The Chernov-Ososkov modification
turned out to be more robust than the original K̊asa method in handling nearly
singular cases, i.e. when the data points were sampled along small arcs (we will
present experimental evidence in Section 5.7).

This modification was designed for the use in high energy physics experiments
and employed is several nuclear research centers for a number of years. In those
experiments, one deals with elementary particles born in an accelerator that move
along circular arcs in a constant magnetic field in a detector chamber (such as
a bubble chamber); physicists determine the energy of the particle by measur-
ing the radius of its trajectory; faster particles move along arcs of larger radius
(lower curvature), thus the nearly singular circle fit occurs quite often in those
experiments.

Drawbacks. A disadvantage of the Chernov-Ososkov modification is the
complexity of its algebraic formulas (5.17)–(5.19), which are not easy to program.
Besides, the lack of theoretical analysis (until 2005) was disheartening.

These issues were resolved in the late 1980s when Pratt (independently of
Chernov and Ososkov) proposed a different algebraic circle fit [150] described
in the next section. The Pratt fit turns out to be mathematically equivalent
to the Chernov-Ososkov method, but it admits a simpler, more elegant, and
numerically stable programming implementation; it is also much easier to analyze
theoretically.

5.5. Pratt circle fit

Modified objective function by Pratt. We go back to the parameters
A, B, C,D introduced in Section 3.2, i.e. we describe a circle by algebraic equation

(5.20) A(x2 + y2) + Bx + Cy + D = 0,

as it was done in (3.8). Now the function F2 in (5.17) can be rewritten as

(5.21) F2 =
1

B2 + C2 − 4AD

n∑
i=1

(Azi + Bxi + Cyi + D)2
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(indeed, its value does not change if we multiply the vector (A, B, C,D) by a
scalar, thus it is always possible to make A = 1 and recover (5.17)).

Constrained minimization. Recall that B2 + C2− 4AD > 0 whenever the
quadruple (A, B, C,D) represents a circle (Section 3.2). Thus, the minimization
of (5.21) over A, B, C,D is equivalent to the minimization of the simpler function

(5.22) F3(A, B, C,D) =
n∑

i=1

(Azi + Bxi + Cyi + D)2

subject to the constraint

(5.23) B2 + C2 − 4AD = 1,

which, by the way, we have already encountered in (3.10). Under this constraint,
equation (5.20) describes all circles and lines in the xy plane, see Section 3.2.
Thus the Pratt algorithm conveniently incorporates lines into its selection of the
best fit (unlike the K̊asa and Chernov-Ososkov methods that can only return
circles).

Reduction to an eigenvalue problem. To solve the minimization problem
(5.22)–(5.23), Pratt [150] employs methods of linear algebra. The function (5.22)
can be written in matrix form as

(5.24) F3 = ‖XA‖2 = AT (XTX)A,

where A = (A, B, C,D)T is the vector of parameters and

(5.25) X =

 z1 x1 y1 1
...

...
...

...
zn xn yn 1


is the n × 4 ‘extended data matrix’ (note that it is different from (5.11)). The
constraint (5.23) can be written as

(5.26) ATBA = 1,

where

(5.27) B =


0 0 0 −2
0 1 0 0
0 0 1 0

−2 0 0 0

 .

Now introducing a Lagrange multiplier η we minimize the function

G(A, η) = AT (XTX)A− η(ATBA− 1).

Differentiating with respect to A gives the first order necessary condition

(5.28) (XTX)A− ηBA = 0,
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thus A must be a generalized eigenvector of the matrix pair (XTX,B). As the
matrix B is invertible, we can rewrite (5.28) as

(5.29) B−1(XTX)A− ηA = 0,

hence η is an eigenvalue and A is an eigenvector of the matrix B−1(XTX).

Analysis of the eigenvalue problem. Let us examine the eigensystem of
B−1(XTX). The matrix XTX is positive semi-definite, and in the generic case
it is positive definite (the singular case is discussed below). The other matrix,
B−1, is symmetric and has four real eigenvalues, one of them negative and three
other positive (its spectrum is {1, 1, 0.5,−0.5}). Premultiplying (5.29) with Y =
(XTX)1/2 transforms it into

YB−1Y(YA)− η(YA) = 0,

hence η is an eigenvalue of YB−1Y; also note that Y = YT . Thus, by Sylvester’s
law of inertia [78] the matrix B−1(XTX) has the same signature as B−1 does,
i.e. the eigenvalues of B−1(XTX) are all real, exactly three of them are positive
and one is negative.

We note that the negative eigenvalue η < 0 corresponds to an eigenvector A
satisfying ATBA < 0, according to (5.28), hence it does not represent any (real)
circle or line. Three positive eigenvalues correspond to real circles (or lines).

But which eigenpair (η,A) solves our problem, i.e. minimizes F3? Well, note
that

F3 = AT (XTX)A = ηATBA = η

(due to the constraint (5.26)), hence the function F3 is minimized when η is the
smallest positive eigenvalue of B−1(XTX).

The two larger positive eigenvalues apparently correspond to saddle points of
the function F3, so they are of no practical interest.

Singular case of the eigenvalue problem. Lastly we turn to the singular
case. The matrix XTX is singular if and only if there exists a non-zero vector
A0 = (A, B, C,D) such that XA0 = 0, i.e.

A(x2
i + y2

i ) + Bxi + Cyi + D = 0

for all i = 1, . . . , n. This means precisely that the data points (xi, yi) either lie
on a circle (this happens if A 6= 0) or on a line (if A = 0). In either case η = 0
is an eigenvalue of the matrix B−1(XTX), the corresponding eigenvector is A0,
and

F3(A0) = ‖XA0‖2 = 0,

hence A0 minimizes F3. In fact it provides a perfect fit.

Conclusions. The Pratt circle fit is given by an eigenvector A = (A, B, C,D)
of the matrix B−1(XTX) that corresponds to its smallest nonnegative eigenvalue
η ≥ 0. If X has full rank (the generic case), then A can also be found by
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1. Form the matrix X and compute its (short) SVD, X = UΣVT .
2. If σ4 < ε, then A is the 4th column of V. Stop.
3. If σ4 ≥ ε, form the matrix Y = VΣVT .
4. Compute the symmetric matrix YB−1Y and find its eigensystem.
5. Select the eigenpair (η,A∗) with the smallest positive eigenvalue η.
6. Compute A = Y−1A∗.

Table 5.1. Pratt circle fit (SVD-based).

A = Y−1A∗, where Y = (XTX)1/2 and A∗ is an eigenvector of the symmetric
matrix YB−1Y that corresponds to its smallest positive eigenvalue η > 0 (as a
side note: B−1(XTX) has three positive and one negative eigenvalue).

5.6. Implementation of the Pratt fit

The analysis in the previous section uniquely identifies the eigenpair (η,A) of
the matrix B−1(XTX) that provides the Pratt fit, but we also need a practical
algorithm to compute it. Here we describe two such algorithms, each one has its
own merit.

SVD-based Pratt fit. If one uses software with built-in matrix algebra op-
erations (such as MATLAB), then one may be tempted to call a routine returning
the eigenpairs of B−1(XTX) and select the eigenvector A corresponding to the
smallest nonnegative eigenvalue. This promises a simple, albeit not the fastest,
solution.

However, this solution is not numerically stable. For one reason, the condi-

tion number of the matrix XTX is that of X squared, i.e. κ(XTX) =
[
κ(X)

]2
;

thus assembling and using XTX may cause an explosion of round-off errors if
XTX happens to be nearly singular. Second, we have observed cases where the
numerically computed eigenvalues of B−1(XTX) turned out complex, though
theoretically they all must be real.

A more stable matrix solution is achieved by the singular value decomposition
(SVD). First, we compute the (short) SVD, X = UΣVT , of the matrix X. If
its smallest singular value, σ4, is less than a predefined tolerance ε (say, ε =
10−12), then we have a singular case at hand, and the solution A is simply the
corresponding right singular vector, i.e. the fourth column of the V matrix.

In the regular case (σ4 ≥ ε), we form Y = VΣ and find the eigenpairs
of the symmetric matrix YTB−1Y. Selecting the eigenpair (η,A∗) with the
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smallest positive eigenvalue and computing A = VΣ−1A∗ completes the solution.
Computing the matrix Σ−1 is simple – we just replace its diagonal components
with their reciprocals.

We call this algorithm the SVD-based Pratt fit .

Newton-based Pratt fit. If matrix algebra functions are not available, or if
one is hunting for speed rather than numerical stability, one can find η by solving
the characteristic equation

(5.30) det(XTX− ηB) = 0.

This is a polynomial equation of the 4th degree in η, which we write as P (η) = 0.
In fact, this equation plays the same role as the Chernov-Ososkov quartic equation
(5.18), which is not surprising as the two methods are mathematically equivalent.
But (5.30) is easier to analyze and to solve than (5.18). Expanding (5.30) gives

(5.31) P (η) = 4η4 + c2η
2 + c1η + c0 = 0,

where

c2 = −zz − 3xx2 − 3yy2 − 4xy2 − 2xx yy

c1 = z̄(zz − z̄2) + 4z̄(xx yy − xy2)− xz2 − yz2(5.32)

c0 = xz2yy + yz2xx− 2xz yz xy − (xx yy − xy2)(zz − z̄2),

here we use the same notation system as in (5.18)–(5.19) and again assume that
the data set is centered, i.e. x̄ = ȳ = 0. Notably, (5.31)–(5.32) look simpler and
shorter than (5.18)–(5.19).

The practical solution of (5.31) is based on the following fact. Suppose the
matrix XTX is not singular, i.e. P (0) 6= 0. Let

η1 < 0 < η2 ≤ η3 ≤ η4

denote the roots of (5.31).

Theorem 5.1. In the nonsingular case we have P (0) < 0 and P ′′(η) < 0 for all
0 ≤ η ≤ η2. Thus, a simple Newton method supplied with the initial guess η = 0
always converges to the smallest positive root η2 of P (η).

Proof. Denote by η′1 ≤ η′2 ≤ η′3 the zeroes of the derivative P ′(η), and by
η′′1 < η′′2 the zeroes of the second derivative P ′′(η) = 48η2 + c2. Note that the
cubic term is missing in (5.31), so there is no linear term in P ′′(η). Since c2 < 0,
it follows that η′′1 < 0 < η′′2 . Now due to the interlacing property of the roots of
a polynomial and its derivative we conclude that

η′1 ≤ η′′1 < 0 < η2 ≤ η′2 ≤ η′′2 .

This implies that P (0) < 0, P ′(0) > 0, and P (η) is a convex function (meaning
that P ′′(η) < 0) in the interval between 0 and the smallest positive root η2. Thus



5.6. IMPLEMENTATION OF THE PRATT FIT 115

1. Form the matrix X and compute XTX.
2. Compute the coefficients (5.32) of the characteristic equation (5.31).
3. Initialize η = 0, and apply Newton’s procedure to find a root η.
4. Compute A as a null vector of XTX− ηB .

Table 5.2. Pratt circle fit (Newton-based).

the Newton procedure is bound to converge, and its limit point will be the desired
root η2. �

In practice, the Newton procedure converges in 3-5 iterations, on the average,
with the tolerance set to 10−12. Once the smallest positive root η2 of (5.31) is
located, the parameter vector A is chosen as a null vector of XTX−ηB according
to (5.28).

We call this algorithm the Newton-based Pratt fit .

Computational issues. We have determined experimentally, working with
MATLAB, that the above Newton-based implementation of the Pratt fit is just
as fast as the K̊asa method (see Table 5.3). The numerically stable SVD-based
implementation of the Pratt fit described earlier in this section is about 2-3 times
slower than the K̊asa method. For comparison, all geometric fits are at least 10
times slower than the K̊asa method.

MATLAB codes of both versions of the Pratt method (as well as many other
circle fits) are available from our web page [84] .

General remarks on numerical stability. It is common nowadays to
require the use of numerically stable procedures (such as QR and SVD) in ma-
trix computations and avoid fast but unstable solutions (e.g., forming “normal
equations”). However in applied statistics the significance of numerical stabil-
ity is diminished by the very nature of statistical problems, because round-off
errors that occur in numerically unstable algorithms are often far smaller than
uncertainties resulting from statistical errors in data.

For algebraic circle fits, the issue of numerical stability surfaces only when
the relevant matrices become nearly singular, which happens in two cases: (i)
the data points are almost on a circle, i.e. σ ≈ 0, and (ii) the fitting circular arc
is nearly flat, i.e. R ≈ ∞. Both cases are characterized by a small ratio σ/R.

We have tested experimentally the performance of numerically stable (SVD-
based) algebraic circle fits versus their unstable (Newton-based) counterparts and
found that they performed almost identically under all realistic conditions. The
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K̊asa Pratt Pratt

(SVD-based) (Newton-based)

CPU time 1 2-3 1

Statistical bias heavy small small

Numerical stability N/A high low

Table 5.3. Comparison of three algebraic circle fits.

difference between them becomes noticeable only when σ/R - 10−12, which is an
extremely rare case.

Even in those extreme cases practical advantages of numerically stable fits are
doubtful. For example, if R ∼ 1 and σ ∼ 10−12, then stable fits determine the
circle parameters to within ∼ 10−12, while unstable fits are accurate to within
10−6, which practically looks just as good. As another extreme, let σ ∼ 1 and
R ∼ 1012; in that case an accurate estimation of the circle radius and center
seems rather pointless anyway; one can just as well fit the data with a straight
line.

In our MATLAB code bank, we supply both stable and unstable versions for
algebraic circle fits.

5.7. Advantages of the Pratt algorithm

The Pratt circle fit has all the advantages of the K̊asa method we described
in Section 5.2, and more!

First, if the points (xi, yi) happen to lie on a circle (or a line), the method
finds that circle (or line) right away. (Note that the K̊asa method would fail in
the case of a collinear data.)

In statistical terms, the Pratt method is consistent in the small-noise limit
σ → 0, i.e. the estimates of the parameters (a, b, R) converge to their true values
as σ → 0. Moreover, the Pratt fit is asymptotically efficient (optimal) in that
limit; see Chapter 7.

Invariance under translations and rotations. Next we verify that the
Pratt fit is invariant under translations and rotations. This fact is less obvi-
ous than a similar invariance of geometric fitting algorithms (established in Sec-
tion 4.11) or the K̊asa method (Section 5.2), as the Pratt procedure is defined
algebraically; thus we provide a detailed proof, following Taubin [176] .

Let us apply a translation

Tc,d : (x, y) 7→ (x + c, y + d)
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by vector (c, d) to the data point coordinates. Then the data matrix X will be
transformed to

Xnew =

 (x1 + c)2 + (y1 + d)2 x1 + c y1 + d 1
...

...
...

...
(xn + c)2 + (yn + d)2 xn + c yn + c 1

 .

We can express this new data matrix as

(5.33) Xnew = XF,

where

(5.34) F =


1 0 0 0
2c 1 0 0
2d 0 1 0

c2 + d2 c d 1

 .

Observe also that

(5.35) B = FTBF

Thus in the new coordinates the characteristic equation (5.28) takes form

FT (XTX)FAnew − ηnewFTBFAnew = 0.

Premultiplying by F−T and comparing to (5.28) we conclude that ηnew = η and

(5.36) A = FAnew.

In fact, we only need A up to a scalar multiple, hence we can assume that its
first component is A = 1, hence A = (1,−2a,−2b, a2 + b2 − R2), and the same
holds for Anew. Now it is easy to conclude from (5.36) that

anew = a + c, bnew = b + d, Rnew = R,

implying the invariance of the Pratt fit under translations.
The analysis of rotations follows the same lines. Let the coordinates be trans-

formed by
Rθ : (x, y) 7→ (x cos θ + y sin θ,−x sin θ + y cos θ),

i.e. the points are rotated through angle θ. The the data matrix is transformed
to Xnew = XF with

(5.37) F =


1 0 0 0
0 c −s 0
0 s c 0
0 0 0 1

 ,

where we use common shorthand notation c = cos θ and s = sin θ. Again the im-
portant relation (5.35) holds, thus we again arrive at (5.36), which easily implies

anew = a cos θ + b sin θ, bnew = −a sin θ + b cos θ, Rnew = R,
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meaning the invariance of the Pratt fit under rotations.

A unified treatment of the K̊asa and Pratt fits. Our old K̊asa method
can be described, in an equivalent manner, as minimizing the Pratt objective
function

F3(A, B, C,D) =
n∑

i=1

(Azi + Bxi + Cyi + D)2

= AT (XTX)A(5.38)

subject to the constraint |A| = 1; the latter can be written as

AKA = 1,

where the matrix K is given by

(5.39) K =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

Comparing this with (5.24)–(5.27) shows that the Pratt and K̊asa fits only differ
by the constraint matrix, one uses B and the other K; also both methods are
invariant under translations, rotations, and similarities.

Now we may consider a general problem of minimizing the same function
(5.38) subject to a constraint ATNA = 1, where N is an arbitrary symmetric
matrix. It is interesting to check for which N the resulting fit would be invariant
under translations, rotations, and similarities.

General invariance under translations. We present the final results omit-
ting tedious details. Our analysis shows that an algebraic fit with constraint
matrix N is invariant under translations Tc,d whenever N = FTNF, where the
matrix F is given by (5.34). This happens precisely if N is a linear combination
of K and B, i.e. N = αK + βB, or

(5.40) N =


α 0 0 −2β
0 β 0 0
0 0 β 0

−2β 0 0 0

 .

General invariance under rotations. Next, an algebraic fit with con-
straint matrix N is invariant under rotations Rθ whenever N = FTNF, but now
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the matrix F is given by (5.37). This happens precisely if N has form

(5.41) N =


α 0 0 γ
0 β 0 0
0 0 β 0
γ 0 0 δ

 ,

where α, β, γ, δ are arbitrary constants. Thus the invariance under rotations
requires a little less than that under translations.

General invariance under similarities. Lastly, consider the invariance of
an algebraic fit with constraint matrix N under similarities (x, y) 7→ (cx, cy). In
that case the parameter vector A = (A, B, C,D) changes by the rule

A = (A, B, C,D) 7→ Ac = (A/c2, B/c, C/c,D).

Hence we need the expression P (c) = AT
c NAc be a homogeneous polynomial in

c (i.e. all its terms must have the same degree with respect to c) so that c could
be just canceled out. For the matrix N in (5.40) we have

P (c) = AT
c NAc = αA2c−4 + β(B2 + C2 − 4AD)c−2.

This expression is homogeneous in c only if α = 0 (which gives the Pratt fit) or
β = 0 (which is the K̊asa fit).

Final conclusion. The only algebraic fits with constraint matrix N that are
invariant under translations, rotations, and similarities are K̊asa and Pratt fits.
We should emphasize that our constraint matrix N is assumed to be constant;
we will see other constraint matrices, which depend on X, later.

5.8. Experimental test

Here we present the results of an experimental comparison of the three circle
fits: K̊asa, Pratt, and geometric.

Experiment. For each α = 360o, 350o, . . . , 30o we have generated 106 random
samples of n = 20 points located (equally spaced) on an arc of angle α of the unit
circle x2 + y2 = 1 and corrupted by Gaussian noise at level σ = 0.05. We started
with a full circle (α = 360o) and went down to rather small arcs (α = 30o).

For each random sample we found the best fitting circle by three methods:
K̊asa, Pratt, and a geometric fit (Levenberg-Marquardt). Each method gives 106

estimates of the radius R, which we ordered and recorded the three quartiles: q1,
q2 (the median), and q3. These three characteristics roughly represent the overall
performance of the method; in particular, the interval (q1, q3) contains 50% of all
the radius estimates. The results are summarized in Table 5.4.

Results. Table 5.4 gives results in numerical format; and Figure 5.6 presents
them in graphic format. On each panel, the top curve is the third quartile q3,
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K̊asa Pratt Geometric
α q1 q2 q3 q1 q2 q3 q1 q2 q3

360 0.995 1.002 1.010 0.997 1.005 1.012 0.994 1.001 1.009
300 0.994 1.002 1.010 0.997 1.005 1.012 0.994 1.001 1.009
240 0.991 1.001 1.011 0.994 1.004 1.015 0.991 1.001 1.011
180 0.976 0.993 1.010 0.987 1.004 1.022 0.984 1.001 1.019
120 0.908 0.943 0.981 0.962 1.003 1.047 0.960 1.001 1.046
90 0.778 0.828 0.883 0.927 1.000 1.087 0.928 1.001 1.088
60 0.449 0.502 0.561 0.833 0.990 1.224 0.840 0.999 1.237
45 0.263 0.297 0.340 0.715 0.967 1.501 0.735 0.996 1.547
30 0.166 0.176 0.190 0.421 0.694 1.433 0.482 0.804 1.701

Table 5.4. Three quartiles of the radius estimates found by each
algorithm (K̊asa, Pratt, geometric fit). The true radius is R = 1.

the middle curve is the median, q2, and the bottom curve is the first quartile, q1.
The grey shaded area captures the middle 50% of the radius estimates.

We see that all three methods perform nearly identically on large arcs, over
the range 150o ≤ α ≤ 360o. A notable feature is a slight bias toward larger
circles (the median always exceeds the true value R = 1 by a narrow margin),
this phenomenon will be explained in Chapter 6 and Chapter 7.

On arcs below 150o, the K̊asa method starts sliding down, as it consistently
underestimates the radius. This tendency becomes disastrous on arcs between
90o and 45o, as all the three quartiles fall sharply, and for arcs under 45o the
K̊asa method returns absurdly small circles.

The Pratt and geometric fits fare better than K̊asa. Their errors grow as the
arc decreases, but their medians stay ‘on mark’ all the way down to 60o for Pratt
and even to 45o for the geometric fit. Observe that the geometric fit slightly
outperforms the best (so far) algebraic fit (Pratt); we will return to this issue in
Chapter 7.

Below 45o, all the medians go down rapidly, and on arcs smaller than 30o all
the fitting procedures become quite unreliable.

Breakdown point. The reason for the breakdown of all our algorithms is
illustrated in Figure 5.7. Here

h = R(1− cos α/2)

is a crucial parameters, the distance from the midpoint of the arc to its chord (h is
called the ‘bow’ in the arc [90]). If the noise level is smaller than the bow (σ < h),
then the shape of the arc is ‘well defined’ [90], i.e. recognizable, and circle fitting
algorithms have a chance to succeed (and some do). On the other hand, if σ > h,
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Figure 5.6. The top curve is the third quartile, the middle curve
is the median, and the bottom curve is the first quartile. The grey
shaded area captures the middle 50% of the radius estimates.

then the noise completely blurs the arc, and circle fitting procedures consistently
fail to find it. In our experiment, R = 1 and σ = 0.05, hence the critical arc size
is

αcr = 2 cos−1(1− σ/R) = 36o,
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h

σ

arc

chord

Figure 5.7. The bow h in the arc and the noise level σ.

below which everybody collapses. Of course, reducing the noise level σ would
allow our algorithms to perform well on smaller arcs. Generally, the fitting algo-
rithms can handle arbitrarily small arcs, as long as σ does not exceed the bow.

Some other algebraic fits. We only describe here the most popular alge-
braic fitting schemes, but a few others are worth mentioning. Gander, Golub,
and Strebel [67] propose to minimize the same function (5.38) that we used for
the Pratt and K̊asa methods, but subject to a more straightforward constraint
‖A‖ = 1, i.e.

A2 + B2 + C2 + D2 = 1.

Our analysis in Section 5.7 shows, however, that the resulting fit would not
be invariant under translations; in fact the authors [67] also admit that it is
geometrically “unsatisfactory”.

Nievergelt [137] proposes a fairly complicated algebraic fit, but if one inspects
it closely, it turns out to be equivalent to the minimization of the same function
(5.38) subject to the constraint

A2 + B2 + C2 = 1.

Nievergelt argues that his fit handles certain singular cases (namely, those of
collinear data) better than the K̊asa fit does. Nievergelt also recognizes that
his fit would not be invariant under translations. As a remedy he uses a prior
centering of the data, i.e. translating the coordinate system to enforce x̄ = ȳ = 0;
this trick makes the final result invariant under both translations and rotations.
(Prior data centering can also be applied to the Gander-Golub-Strebel fit and
make it invariant.) We note, however, that neither fit is invariant under similar-
ities, according to our Section 5.7, and their authors did not address this issue.

The Nievergelt fit was proposed independently, a year later, by Strandlie,
Wroldsen, and Frühwirth [174] who explored an interesting 3D representation
of the circle fitting problem. They treat z = x2 + y2 as ‘a third coordinate’,
thus every observed point (xi, yi) has its image (xi, yi, zi) in the 3D space, with
zi = x2

i + y2
i . Note that all these spacial points lie on the paraboloid z = x2 + y2.

The equation of a circle, Az + Bx + Cy + D = 0, now represents a plane in the
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xyz space; thus the problem reduces to fitting a plane to a set of 3D data points.
If one fits a plane to 3D points by minimizing geometric distances, then one needs
to minimize

∑
(Azi + Bxi + Cyi + D)2 subject to constraint A2 + B2 + C2 = 1;

see [174] and our Section 8.2 for more details. This explains the choice of the
constraint.

The authors of [174] call their method Paraboloid fit, because the data points
lie on a paraboloid.
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Figure 5.8. The top curve is the third quartile, the middle curve
is the median, and the bottom curve is the first quartile. The grey
shaded area captures the middle 50% of the radius estimates.

Practically, though, the above two algebraic fits perform not much better
than K̊asa. Figure 5.8 shows the corresponding plots for the Gander-Golub-
Strebel (GGS) fit and the Nievergelt method (both with the prior data centering)
obtained in the same experiment as the one reported in Figure 5.6. We see that
the GGS fit has only a slightly smaller bias than K̊asa (but a much greater
variance when the arc is about 90o). The Nievergelt fit has smaller bias than
GGS or K̊asa, but it is still more biased than the Pratt and geometric fits.
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We emphasize that the above experimental results are obtained for a specific
choice of the true circle center, which was placed at (0, 0). For different locations
of the center, the bias may be larger or smaller, as these two fits are not invariant
under translations.

5.9. Taubin circle fit

Another interesting variant of algebraic circle fits was proposed in 1991 by
Taubin [176]. In the case of circles discussed here, the Taubin fit is very similar to
the Pratt, in its design and performance, so we only describe it briefly. However,
the Taubin fit (unlike Pratt) can be generalized to ellipses and other algebraic
curves.

Modified objective function by Taubin. Recall that the K̊asa method
minimizes the following function (5.14):

(5.42) F1 =
n∑

i=1

d2
i (di + 2R)2,

where the di’s denote the distances from the data points to the circle (a, b, R). In
Section 5.3 we used a natural assumption |di| � R to derive the approximation
(5.15), i.e.

(5.43) F1 ≈ 4R2

n∑
i=1

d2
i ,

on which both Chernov-Ososkov and Pratt modifications were then built.
Now the same assumption |di| � R can be used as follows:

R2 ≈ (di + R)2 = (xi − a)2 + (yi − b)2.

Furthermore, we can improve this approximation by averaging

R2 ≈ 1
n

n∑
i=1

(xi − a)2 + (yi − b)2,

in which case some positive and negative fluctuations will cancel out. Thus (5.43)
can be rewritten as

(5.44) F1 ≈
4

n

[ n∑
i=1

(xi − a)2 + (yi − b)2

][ n∑
i=1

d2
i

]
.
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Since we actually want to minimize
∑

d2
i , we can achieve that goal (approxi-

mately) by minimizing the following function:

F4(a, b, R) =

∑[
(xi − a)2 + (yi − b)2 −R2

]2

4n−1
∑

(xi − a)2 + (yi − b)2

=

∑
[zi − 2axi − 2byi + a2 + b2 −R2]2

4n−1
∑

[zi − 2axi − 2byi + a2 + b2]
.(5.45)

At this point we switch to the algebraic circle parameters A, B, C,D by the rules
(3.11), i.e. we substitute

a = − B

2A
, b = − C

2A
, R2 =

B2 + C2 − 4AD

4A2

and obtain

(5.46) F4(A, B, C,D) =

∑
[Azi + Bxi + Cyi + D]2

n−1
∑

[4A2zi + 4ABxi + 4ACyi + B2 + C2]
.

The minimization of (5.46) is proposed by Taubin [176]. He actually arrived at
(5.46) differently, by using gradient weights; those will be discussed in Section 6.5.

Taubin fit in matrix form. The minimization of (5.46) is equivalent to the
minimization of the simpler function

(5.47) F3(A, B, C,D) =
n∑

i=1

(Azi + Bxi + Cyi + D)2,

which first appeared in (5.22), subject to the constraint

4A2z̄ + 4ABx̄ + 4ACȳ + B2 + C2 = 1.

In matrix form, this means the minimization of

F3(A) = ‖XA‖2 = AT (XTX)A,

in terms of (5.24), subject to the constraint ATTA = 1, where

(5.48) T =


4z̄ 2x̄ 2ȳ 0
2x̄ 1 0 0
2ȳ 0 1 0
0 0 0 0


(here we again use our standard ‘sample mean’ notation z̄ = 1

n

∑
zi, etc.). Just

like in Section 5.5, the solution A would be a generalized eigenvector of the matrix
pair (XTX,T).

Taubin fit versus Pratt fit. Taubin’s objective function (5.46) can be
simplified in a different way. Observe that it is a quadratic polynomial in D,
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hence F4 has a unique global (conditional) minimum in D, when the other three
parameters A, B, C are kept fixed, which gives

(5.49) D = −Az̄ −Bx̄− Cȳ

(notably, this solves the third K̊asa equation in (5.5), as in that case A = 1).
Substituting (5.49) into the denominator of (5.46) gives

(5.50) F4(A, B, C,D) =

∑
[Azi + Bxi + Cyi + D]2

B2 + C2 − 4AD
,

and this function is identical to the Pratt objective function (5.21); quite a sur-
prising observation!

So both Pratt and Taubin methods seem to minimize the same objective
function F2 = F4, but are they really equivalent? No, because the Taubin

method involves one extra relation, (5.49). We recall that Pratt’s minimization
of (5.21) is equivalent to the minimization of (5.47) subject to the constraint

(5.51) B2 + C2 − 4AD = 1,

cf. (5.22)–(5.23). Now the Taubin algorithm is equivalent to the minimization of
(5.47) subject to two constraints: (5.51) and (5.49).

One can think of the Pratt method as finding a minimum of the function F3

restricted to the 3D manifold P1 defined by equation (5.51), while the Taubin
method finds a minimum of the same function F3 but restricted to a smaller
domain, the 2D surface P2 defined by two equations, (5.51) and (5.49). Obviously,
P2 ⊂ P1, hence the Pratt’s minimum will be always smaller than (or equal to)
the Taubin’s minimum.

However, this does not mean that the Pratt fit is always better than the
Taubin fit, as the real quality of each fit is measured by the sum of squared
distances,

∑
d2

i . In our tests, we observed the Taubin fit actually beat the Pratt
fit, in this sense, quite regularly. The statistical accuracy of both fits will be
analyzed in Chapter 7.

5.10. Implementation of the Taubin fit

Elimination of parameter D. For simplicity, let us assume, as usual, that
the data set is centered, i.e. x̄ = ȳ = 0. Then (5.49) takes form

D = −Az̄,

which allows us to easily eliminate D from the picture. Now the problem is to
minimize

(5.52) F5(A, B, C) =
n∑

i=1

[
A(zi − z̄) + Bxi + Cyi

]2
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subject to the constraint

(5.53) 4z̄A2 + B2 + C2 = 1.

It is further convenient to introduce a new parameter, A0 = 2z̄1/2A. Now we
minimize

(5.54) F5(A0, B, C) =
n∑

i=1

[
A0

zi − z̄

2z̄1/2
+ Bxi + Cyi

]2

subject to

(5.55) A2
0 + B2 + C2 = 1.

Reduction to eigenvalue problem. Again we employ methods of linear
algebra. The function (5.54) can be written in matrix form as

(5.56) F5 = ‖X0A0‖2 = AT
0 (XT

0 X0)A0,

where A0 = (A0, B, C)T is the reduced and modified vector of parameters and

(5.57) X0 =

 (z1 − z̄)/(2z̄1/2) x1 y1
...

...
...

(zn − z̄)/(2z̄1/2) xn yn


is the n×3 ‘modified data matrix’. The constraint (5.55) simply means ‖A0‖ = 1,
i.e. A0 must be a unit vector.

The minimum of (5.56) is attained on the unit eigenvector of the matrix XT
0 X0

corresponding to its smallest eigenvalue. This matrix is symmetric and positive-
semidefinite, thus all its eigenvalues are real and nonnegative. Furthermore, this
matrix is non-singular, i.e. it is positive-definite, unless the data points lie of a
circle or a line (i.e. admit a perfect fit).

SVD-based Taubin fit. Practically, one can evaluate A0 as follows. The
simplest option is to call a matrix algebra function that returns all the eigenpairs
of XT

0 X0 and select the eigenvector corresponding to the smallest eigenvalue.
Alternatively, the eigenvectors of XT

0 X0 can be found by singular value de-
composition (SVD), as they coincide with the right singular vectors of X0. Ac-
cordingly, one can compute the (short) SVD of the matrix X0, i.e. X0 = UΣVT ,
and then A0 will be the third (last) column of V. This procedure bypasses the
evaluation of the matrix XT

0 X0 altogether and makes computations more stable
numerically.

We call this algorithm SVD-based Taubin fit .

Newton-based Taubin fit. If matrix algebra functions are not available,
or if one is hunting for speed rather than numerical stability, one can find the
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smallest eigenvalue η of the matrix XT
0 X0 by solving its characteristic equation

(5.58) det(XT
0 X0 − ηI) = 0.

This is a polynomial equation of the 3rd degree in η, which can be written as

(5.59) P (η) = c3η
3 + c2η

2 + c1η + c0 = 0,

where
c3 = 4z̄

c2 = −zz − 3z̄2

c1 = z̄(zz − z̄2) + 4z̄(xx yy − xy2)− xz2 − yz2

c0 = xz2yy + yz2xx− 2xz yz xy − (xx yy − xy2)(zz − z̄2)

(5.60)

where we use the same notation as in (5.31)–(5.32) (remember also that we again
assume that the data set is centered, i.e. x̄ = ȳ = 0; the relation z̄ = xx + yy is
helpful, too). Interestingly, the formulas for c1 and c0 are identical in (5.32) and
here.

Since the eigenvalues of XT
0 X0 are real and nonnegative, equation (5.59) al-

ways has three nonnegative real roots. Therefore P (0) ≤ 0. In the nonsingular
case, we have P (0) < 0, and then P ′′(η) < 0 in the interval between 0 and the
first (smallest) root. Thus a simple Newton method supplied with the initial
guess η = 0 always converges to the desired smallest root of (5.58).

We call this algorithm Newton-based Taubin fit .
When choosing an algorithm for practical purposes, recall our comments on

the issue of numerical stability at the end of Section 5.6.

Experimental tests. Computationally, the Taubin fit is slightly simpler,
hence a bit less expensive than the Pratt fit. We also tested its accuracy exper-
imentally, in the way described in Section 5.8. We recall that in that test, see
Table 5.4, the Pratt and geometric fits showed a very similar performance, while
the K̊asa method turned out to be much less reliable.

Additional tests reveal that the performance of the Taubin fit closely follows
that of Pratt and geometric fits, in fact in this picture it lies “in between”. For the
reader’s convenience, we summarize our results regarding these three algorithms
in Table 5.5, where again q1, q2 and q3 are the three quartiles of the radius
estimates (recall that the true radius is R = 1).

We note that on smaller arcs Taubin’s characteristics are closer to the (slightly
less accurate) Pratt fit, and on larger arcs – to the (more superior) geometric fit.
However, the difference between these three fits is fairly small, so in most practical
application any one of them would do a good job. One should remember, though,
that every version of the geometric fit (Chapter 4) is at least 5-10 times slower
than any algebraic fit, including the numerically stable SVD-based Pratt and
Taubin.
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Pratt Taubin Geometric
α q1 q2 q3 q1 q2 q3 q1 q2 q3

360 0.997 1.005 1.012 0.995 1.002 1.010 0.994 1.001 1.009
300 0.997 1.005 1.012 0.995 1.002 1.010 0.994 1.001 1.009
240 0.994 1.004 1.015 0.992 1.002 1.012 0.991 1.001 1.011
180 0.987 1.004 1.022 0.985 1.002 1.020 0.984 1.001 1.019
120 0.962 1.003 1.047 0.960 1.001 1.045 0.960 1.001 1.046
90 0.927 1.000 1.087 0.925 0.999 1.086 0.928 1.001 1.088
60 0.833 0.990 1.224 0.833 0.991 1.226 0.840 0.999 1.237
45 0.715 0.967 1.501 0.720 0.975 1.515 0.735 0.996 1.547
30 0.421 0.694 1.433 0.442 0.733 1.522 0.482 0.804 1.701

Table 5.5. Three quartiles of the radius estimates found by Pratt,
Taubin, and geometric fit. The true radius is R = 1.

Invariance under translations and rotations. Lastly, we note that the
Taubin fit, just like the Pratt and K̊asa fits, is invariant under translations,
rotations, and similarities. This invariance can be proved in the same way as we
did in Section 5.7 for the Pratt fit; the only difference is that now we have a new
constraint matrix, T, which is data-dependent, hence it changes under coordinate
transformation. We just need to check that the new matrix, Tnew, is obtained by
the rule

Tnew = FTTF

where F is the matrix that describes the translations, see (5.34), or rotations, see
(5.37) in Section 5.7. The above identity is an analogue of (5.35); it can be easily
verified directly. The invariance of under similarities follows from the fact that
whenever (x, y) 7→ (cx, cy), we have (A, B, C,D) 7→ (A/c2, B/c, C/c,D), and
hence ATTA 7→ c−2ATTA. Thus the constraint ATTA = 1 will be transformed
into ATTA = c2, which is irrelevant as our parameter vector A only needs to be
determined up to a scalar multiple.

In fact, Taubin proved that his method was invariant in a more general context
of fitting ellipses to data; see his article [176].

5.11. General algebraic circle fits

We have now seen several algebraic circle fits: K̊asa, Pratt, Taubin, Gander-
Golub-Strebel, and Nivergelt. Here we present a general definition of algebraic
circle fits that encompasses all the known fits as particular examples.
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Matrix representation. Algebraic circle fits are based on the algebraic
equation of a circle

(5.61) A(x2 + y2) + Bx + Cy + D = 0,

where A = (A, B, C,D)T is the 4-parameter vector. Every algebraic fit minimizes
the function

F(A, B, C,D) =
1

n

n∑
i=1

(Azi + Bxi + Cyi + D)2

= n−1AT (XTX)A = ATMA,(5.62)

subject to a constraint

(5.63) ATNA = 1

for some matrix N. Here we use our shorthand notation zi = x2
i + y2

i and

M =
1

n
XTX =


zz zx zy z̄
zx xx xy x̄
zy xy yy ȳ
z̄ x̄ ȳ 1

 ,

where

(5.64) X =

 z1 x1 y1 1
...

...
...

...
zn xn yn 1

 .

The constraint matrix N in (5.63) determines the particular algebraic fit. As we
know,

(5.65) N = K =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


for the K̊asa fit, cf. (5.39),

(5.66) N = P =


0 0 0 −2
0 1 0 0
0 0 1 0

−2 0 0 0


for the Pratt fit, see (5.27), and

(5.67) N = T =


4z̄ 2x̄ 2ȳ 0
2x̄ 1 0 0
2ȳ 0 1 0
0 0 0 0

 ,
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for the Taubin fit, see (5.48); here we again use our standard ‘sample mean’
notation z̄ = 1

n

∑
zi, etc.

Reduction to a generalized eigenvalue problem. To solve the con-
strained minimization problem (5.62)–(5.63) one uses a Lagrange multiplier η
and reduces it to an unconstrained minimization of the function

G(A, η) = ATMA− η(ATNA− 1).

Differentiating with respect to A and η gives

(5.68) MA = ηNA

and

(5.69) ATNA = 1,

thus A must be a generalized eigenvector for the matrix pair (M,N), which also
satisfies ATNA = 1. The problem (5.68)–(5.69) may have several solutions. To
choose the right one we note that for each solution (η,A) we have

(5.70) ATMA = ηATNA = η,

thus for the purpose of minimizing ATMA we should choose the solution of
(5.68)–(5.69) with the smallest η. Note that η is automatically non-negative,
since M = 1

n
XTX is a positive semi-definite matrix.

Since multiplying A by a scalar does not change the circle it represents, it is
common in practical applications to require that ‖A‖ = 1, instead of ATNA = 1.
Accordingly one needs to replace the rigid constraint (5.69) with a softer one
ATNA > 0. The latter can be further relaxed as follows.

For generic data sets, M is positive definite. Thus if (η,A) is any solution of
the generalized eigenvalue problem (5.68), then ATMA > 0. In that case, due
to (5.70), we have ATNA > 0 if and only if η > 0. Thus it is enough to solve
the problem (5.68) and choose the smallest positive η and the corresponding unit
vector A. This rule is almost universally used in practice. However, it needs to
be adapted to one special case, which turns out quite delicate.

The singular case. The matrix M is singular if and only if the observed
points lie on a circle (or a line); in this case the eigenvector A0 corresponding
to η = 0 satisfies XA0 = 0, i.e. it gives the interpolating circle (line), which is
obviously the best possible fit. However it may happen that for some (poorly
chosen) matrices N we have AT

0 NA0 < 0, so that the geometrically perfect
solution fails to satisfy the ‘soft’ constraint ATNA > 0, and thus has to be
rejected. Such algebraic fits are poorly designed and not worth considering.

For all the constraint matrices N mentioned so far we have ATNA ≥ 0
whenever ATMA = 0. For example, the K̊asa matrix K, the Taubin matrix T,
and the constraint matrices corresponding to the Gander-Golub-Strebel fit and
the Nivergelt fit (Section 5.8), are all positive semi-definite, hence ATNA ≥ 0
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for any vector A. The Pratt matrix P is not positive semi-definite, but we have
seen that ATPA > 0 for any vector A that represents a circle or a line, so P is
good, too.

Thus in the singular case, the eigenvector A corresponding to η = 0 is the
solution of the constrained minimization problem (5.62)–(5.63).

Summary. We conclude that the problem (5.62)–(5.63) can be solved in
two steps: first we find all solutions (η,A) of the generalized eigenvalue problem
(5.68), and then we pick the one with the minimal non-negative η. If η = 0, then
the method returns a perfect fit (an interpolating circle or line).

5.12. A real data example

Here we present an example of fitting circular arcs to plotted contours in
archaeological field expeditions [44]. It was already mentioned in our Preface.

A common archaeological problem consists of estimating the diameter of a
potsherd from a field expedition. The original diameter at specific point along
the profile of a broken pot – such as the outer rim or base – is restored by fitting
a circle to a sherd. Sherd profiles are often traced with a pencil on a sheet of
graph paper, which is later scanned and transformed into an array of pixels (data
points). A typical digitized arc tracing a circular wheelmade antefix is shown in
Figure 5.9. This image contains 7452 measured points.
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Figure 5.9. A typical arc drawn by pencil with a profile gauge
from a circular wheelmade antefix.

The best fitting circle found by the geometric (Levenberg-Marquardt) method
has parameters

(5.71) center = (7.4487, 22.7436), radius = 13.8251,

which we assume to be exact (ideal).
Figure 5.10 shows a fragment of the above image, it consists of merely n = 22

randomly chosen points (from the original 7452 points). Visually, they do not
really appear as a circular arc, they rather look like a linear segment. Surprisingly,
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geometric fitting algorithms (again, we used the Levenberg-Marquardt) applied
to these 22 points returned the following circle:

(5.72) center = (7.3889, 22.6645), radius = 13.8111,

which is strikingly accurate (compare this to (5.71)).
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Figure 5.10. A fragment of the arch shown in Figure 5.9.

Now algebraic circle fits presented in this chapter produced the following
results:

center = (10.8452, 19.1690), radius = 8.9208(K̊asa)

center = (11.2771, 18.7472), radius = 8.3222(GGS)

center = (7.3584, 22.6964), radius = 13.8552(Nievergelt)

center = (7.3871, 22.6674), radius = 13.8146(Pratt)

center = (7.3871, 22.6674), radius = 13.8145(Taubin)

We see that the K̊asa and Gander-Golub-Strebel (GGS) fits greatly underestimate
the radius, while the Nievergelt method overestimates it. The Pratt and Taubin
fits are nearly identical and give results very close to the geometric fit. Overall,
the Pratt fit found a circle closest to the ideal one (5.71).

One may naturally want to estimate errors of the returned values of the circle
parameters, but this is a difficult task for most EIV regression problems, including
the circle fitting problem. In particular, under the standard statistical models
described in Chapter 6, the estimates of the center and radius of the circle by
the Levenberg-Marquardt, Pratt, and Taubin methods happen to have infinite
variances and infinite mean values!

An approximate error analysis developed in Chapter 7 can be used to as-
sess errors in a realistic way. Then the errors of the best methods (Levenberg-
Marquardt, Pratt, and Taubin) happen to be ≈ 0.1. For the K̊asa fit, there is an
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additional bias that needs to be taking into account, too. Since our data point
span an arc of ∼ 20o, the K̊asa fit tends to return radius 2-3 times smaller than
the actual radius; see Table 5.4. A detailed errors analysis is given in the next
two chapters.

5.13. Initialization of iterative schemes

In the previous sections we treated each algebraic fit as a stand-alone proce-
dure that aimed at the ultimate goal: an accurate estimation of the true circle
parameters. However, in many applications a non-iterative algebraic fit is used
as an intermediate tool, to merely initialize a subsequent geometric fit.

In that case it is desirable that the algebraic prefit returns an estimate that
lies close to the global minimum of the objective function, so that the geometric fit
would quickly converge to it. This goal is different from the usual one – closeness
to the true parameter value; see an illustration in Figure 5.11.

xa bc d

F(x)

Figure 5.11. Minimization of a function F (x). Here a denotes the
global minimum, b the true parameter value, and c and d are two
different initial guesses. The guess d is closer to the true parameter
value, thus it is better than c as a stand-alone estimate. However
c is closer to the minimum a, thus the iterative algorithm starting
at c will converge to a faster than the one starting at d.

Various initialization schemes. Recall that we have several geometric
fitting procedures (Levenberg-Marquardt, Späth, Landau, all described in Chap-
ter 4); theoretically they minimize the same objective function, (4.18), thus ide-
ally they should return the same estimate.

However, in practice they behave quite differently (even if supplied with the
same initial guess), because they choose different routes to the minimum. Hence
some of them may be trapped in a local minima, some others may move too
slowly and stall before reaching the global minimum, etc.

In addition, we have several algebraic fits which may supply different initial
guesses to the geometric fitting procedures. We emphasize that each algebraic fit
minimizes its own objective function, thus their results differ even theoretically.
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Now one can combine any algebraic prefit (such as K̊asa, Pratt, Taubin) with
any subsequent geometric fitting routine (such as Levenberg-Marquardt, Späth,
Landau) to obtain a full working scheme. Its performance may depend on the
quality of the algebraic prefit, on the quality of the geometric fit, and on how
they ‘blend’ together.

Previous tests. Chernov and Lesort [43] explored various combinations
of algebraic and geometric circle fits in an extensive experimental tests. Their
results demonstrate that each combination is nearly 100% reliable and efficient
when the data are sampled along a full circle or a large arc; this situation remains
quite stable for arcs between 360o and about 90o.

On smaller arcs (below 90o), the K̊asa fit returns a heavily biased estimate
that lies quite far from the global minimum of the objective function F . Then
the Späth and Landau methods would crawl to the minimum of F at such a slow
pace that for all practical purposes they would fail to converge. The Levenberg-
Marquardt fits still converge fast, within 10-20 iterations. If the initial guess is
provided by the Pratt or Taubin fit, then all the geometric methods manage to
converge, though again the Levenberg-Marquardt schemes are far more efficient
than others.

We refer the reader to [43] for more detailed results presented by easy-to-read
plots and diagrams.

Another test. We include another numerical test here similar to the one
described in Section 5.8. For each α = 360o, . . . , 30o we again generate 106

random samples of n = 20 points located (equally spaced) on an arc of angle α of
the unit circle x2 + y2 = 1 and corrupted by Gaussian noise at level σ = 0.05. As
in Section 5.8, we started with a full circle (α = 360o) and wend down to rather
small arcs (α = 30o).

For every generated random sample we determined the distance d from the
circle center estimated by the algebraic fit (K̊asa, Pratt, or Taubin) and the one
found by the subsequent geometric fit (Levenberg-Marquardt). This distance
shows how well the algebraic fit approximates the minimum of the objective
function. We also recorder the number of iterations i the geometric procedure
took to converge.

Table 5.6 shows the medians of d and i for each algebraic fit and for each α.
We see that for large arcs all the algebraic fits provide accurate initial guesses
(in one case, for the full circle, K̊asa is actually the most accurate!). On smaller
arcs, the K̊asa fit falls behind the other two, due to its heavy bias, which results
in a larger number of iterations the Levenberg-Marquardt has to take to recover.
The Taubin fit again slightly outperforms the Pratt fit.

Initialization in nearly singular cases. To this rosy picture we must add
a final, somewhat spicy remark. It concerns the singular case where the data are
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K̊asa Pratt Taubin
α d i d i d i

360 0.00158 3 0.00159 3 0.00159 3
300 0.00190 3 0.00164 3 0.00164 3
240 0.00413 3 0.00188 3 0.00187 3
180 0.01404 4 0.00257 3 0.00256 3
120 0.06969 5 0.00478 4 0.00473 4
90 0.19039 6 0.00815 4 0.00800 4
60 0.53087 9 0.02010 6 0.01929 6
45 0.75537 12 0.04536 8 0.04265 8
30 0.58054 17 0.11519 12 0.10609 12

Table 5.6. The median distance d from the circle center estimate
provided by an algebraic fit (K̊asa, Pratt, or Taubin) and the one
found by the subsequent geometric fit. In addition, i is the median
number of iterations the geometric fit took to converge.

sampled along a very small arc, so that the best fitting circle would look nearly
flat; see an example in Figure 3.1. In that case it is crucial that the initial guess
is selected on the right side of the data set, i.e. inside the best fitting circle.
If the initial guess were selected outside the best circle, it would fall into the
escape valley from which geometric fitting procedures would never recover, cf.
Section 3.7 and Section 3.9.

According to our analysis in Section 3.9, the right side of the data set (i.e.
the side on which the center of the best fitting circle lies) is determined by the
sign of

xxy = 1
n

n∑
i=1

x2
i yi,

which we called the signature of the data set. It is assumed here that the data
set is properly aligned, i.e. it is centered so that x̄ = ȳ = 0 and rotated so that

(5.73) xy = 0 and xx > yy.

In Section 3.9 we established the following rules:

(a) if xxy > 0, then the center of the best fitting circle lies above the x axis;
the wrong valley lies below the x axis;

(b) if xxy < 0, then the center of the best fitting circle lies below the x axis;
the wrong valley lies above the x axis.

Let us see if our algebraic circle fits abide by these rules, i.e. place the center on
the correct side of the data set. For the K̊asa fit, the second equation in (5.5)
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yields

(5.74) b = −C

2
=

yz

2yy
=

xxy + yyy

2yy
.

Since the denominator is positive, the sign of b coincides with that of xxy + yyy.
If this expression has the same sign as xxy, the center is placed on the right side,
otherwise it ends up on the wrong side (in the escape valley).

Usually, in accordance with (5.73), xi’s are larger than yi’s, so xxy is very
likely to be greater than yyy, in which case the K̊asa fit will make the right choice.
However, the wrong side may be selected, too (see an example below), hence the
K̊asa fit may completely distract the subsequent geometric fitting procedure.

The Pratt and Taubin fits can be analyzed similarly. In the Taubin case, we
have

XT
0 X0A0 = ηA0,

where η ≥ 0 is the smallest eigenvalue of XT
0 X0, cf. Section 5.10. Now the second

equation in the above 3× 3 system gives

(5.75) b = − C

2A
=

yz

2(yy − η)
=

xxy + yyy

2(yy − η)
.

We also note that η < yy, because the vector A1 = (0, 0, 1)T has Rayleigh
quotient AT

1 XT
0 X0A1 = yy, which of course cannot be smaller than the minimal

eigenvalue η. Thus again, as in the K̊asa case, the sign of b coincides with that
of of xxy + yyy.

In the Pratt case, the parameter vector A satisfies

XTXA = ηBA,

see Section 5.5, and the third equation of this 4× 4 system gives

b = − C

2A
=

yz

2(yy − η)
=

xxy + yyy

2(yy − η)
,

which coincides with (5.75), except here η is an eigenvalue of a different matrix.
But again one can easily check that η < yy (we omit details), hence the sign of
b coincides with that of xxy + yyy.

Remark 5.2. Comparing (5.74) and (5.75) reveals why the K̊asa fit consistently returns
smaller circles than the Pratt or Taubin fit in the nearly singular case: it happens
because the corrective term η > 0 always decreases the denominator of (5.75).

Returning to our main issue, we see that all the three algebraic fitting algo-
rithms follow the same rule: they place the circle center in accordance with the
sign of xxy + yyy. And the correct choice should be based on the sign of xxy
alone. The question is: are these two rules equivalent? The following example
shows that they are not, i.e. all the algebraic algorithms can actually make the
wrong choice.
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2

2-2 1-1

Figure 5.12. The W-example: a five point set, on which all the
algebraic fits choose the wrong side.

W-example. Consider a set of n = 5 points:

(0, 2), (1,−1− ε), (−1,−1− ε), (2, ε), (−2, ε)

where ε > 0 is a small number. These data resemble letter W, see Figure 5.12,
so we call it a W-example.

The conditions x̄ = ȳ = 0 and (5.73) hold easily. Now we see that

xxy = −2 + 6ε < 0,

on the other hand
xxy + yyy = 4− 6ε2 > 0.

Hence the center of the best fitting circle lies below the x axis, while every
algebraic circle fit returns a center on the opposite side (above the x axis).

This example demonstrates that in nearly singular cases one cannot blindly
rely on algebraic circle fits to initialize a geometric fitting routine. For safety,
one should check whether the ‘algebraic’ circle abides by the rules (a) and (b),
see above. If it does not, one should change the sign of b, for example, before
feeding it to the geometric fitting procedure.



CHAPTER 6

General statistical analysis of curve fits

Thus far we discussed two sides of the the circle fitting problem: its theoretical
analysis (Chapter 3) and its practical solutions (Chapter 4 and Chapter 5). In a
sense, the theoretical analysis of Chapter 3 was ‘pre-computational’, it prepared
us for practical solutions. Chapter 4 and Chapter 5 were ‘computational’. Now we
turn to the third, and last (‘post-computational’) side of the problem: assessment
of the accuracy of the circle fits. This brings us to statistical analysis of circle
fits.

In this chapter we survey basic statistical properties of curve fitting algorithms
when both variables are subject to errors. This is a fairly advanced topic in
modern statistics, so we assume the reader is familiar with the basic concepts
of probability and statistics. Our discussion need not be restricted to lines and
circles anymore, it applies to general curves; though for illustrations we still use
lines and circles.

We also need to make an important remark on the selection of material for
this (and the next) chapter. The statistics literature devoted to the problem of
fitting curves to data is vast, it encompasses all kinds of studies – from numerical
algorithms to highly abstract properties of related probability distributions. It is
simply impossible to present it all here.

This chapter can only serve as an introduction to the subject. When we
selected topics for it, our main criterion was practical relevance. We avoid going
into the depth of theoretical analysis and only cover topics that we deem most
important for image processing applications; i.e. we describe statistical studies
which may have direct effect on practical results and which can explain practical
observations.

6.1. Statistical models

First we need to make assumptions about the underlying probability distri-
bution of observations.

Curves. We assume that the curves are defined by an implicit equation

(6.1) P (x, y;Θ) = 0,

139
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where Θ = (θ1, . . . , θk)
T denotes a vector1 of unknown parameters to be esti-

mated. In many cases, P is a polynomial in x and y, and its coefficients are
parameters (or some functions of parameters). For example, a circle is given by

(x− a)2 + (y − b)2 −R2 = 0,

hence Θ = (a, b, R)T can be regarded as a 3D parameter vector.

Observed data. Each observed point (xi, yi) is a random (noisy) perturba-
tion of a true point (x̃i, ỹi), i.e.

(6.2) xi = x̃i + δi, yi = ỹi + εi, i = 1, . . . , n,

where δi, εi, i = 1, . . . , n are small random errors (noise).
The true points (x̃i, ỹi) are supposed to lie on the true curve, i.e. satisfy

(6.3) P (x̃i, ỹi; Θ̃) = 0, i = 1, . . . , n,

where Θ̃ denotes the vector of true (unknown) parameters. We also use vector
notation xi = (xi, yi)

T and x̃i = (x̃i, ỹi)
T .

Disturbance vectors. The noise vectors ei = xi − x̃i are assumed to be
independent and have zero mean. Both assumptions are standard in the litera-
ture2. Two more specific assumptions on the probability distribution of the noise
are described below. We use the terminology due to Berman and Culpin [18].

Noise distribution: Cartesian model. A vast majority of statisticians
assume that each ei is a two-dimensional normal vector with some covariance
matrix V. In image processing studies, as we explained in Section 1.3, it is most
natural to consider isotropic noise; then V = σ2I, where I denotes the identity
matrix. In this case all our errors εi and δi are i.i.d. normal random variables
with zero mean and a common variance σ2. This is called Cartesian model. It
will be our standard assumption.

Noise distribution: Radial model. An interesting alternative to the
Cartesian model was proposed by Berman and Culpin [18]. They noted that
only deviations of the observed points from the curve affect the fitting procedure,
while their displacement along the curve does not matter. Thus they simplified
the Cartesian model by assuming that deviations only occur in the normal direc-
tion, i.e. ei = zini, where zi is a Gaussian random variable with zero mean and
variance σ2, and ni is a unit normal vector to the curve P (x, y; Θ̃) = 0 at the
point x̃i.

1All our vectors are column vectors, thus we have to put the transposition sign T .
2Dependent, or correlated error vectors are occasionally treated in the literature

[44, 57, 58].
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In both Cartesian and radial model, the value of σ2 is unknown and should
be regarded as a model parameter. Concerning the true points x̃i, i = 1, . . . , n,
two assumptions are possible.

True points location: Functional model. We can assume that the true
points are fixed (but unobservable) and lie on the true curve. Their coordinates
(x̃i, ỹi) are treated as additional parameters of the model (called incidental or
latent parameters). Since the true points are constrained to lie on the true
curve (6.3), their locations can be described by n independent parameters (one
per point). Now the model has the total of k + 1 + n parameters: k principal
parameters θ1, . . . , θk of the unknown curve, the unknown σ2, and the locations
of the true points. This assumption is known as functional model.

True points location: Structural model. We can assume that the true
points x̃i are independent realizations of a random variable with a certain proba-
bility distribution concentrated on the true curve P (x, y; Θ̃) = 0. For example, if
the curve is a line, y = θ0 +θ1x, then x̃i can have a normal distribution with some
parameters µ0 and σ2

0, and ỹi is then computed by ỹi = θ̃0 + θ̃1x̃i. In this model,
the number of parameters is fixed (independent of n): these are the k principal
parameters θ1, . . . , θk of the unknown curve, the unknown σ2, and the parameters
of the underlying probability distribution on the true curve. This assumption is
known as structural model.

True points location: Ultrastructural model. In the studies of fitting a
straight line y = θ0 + θ1x to data, an interesting combination of the above two
models was proposed by Dolby [56] in 1976 and quickly became populat in the
statistics literature [39, 40]. Dolby assumed that every x̃i was an independent
realization of a normal random variable with its own mean µi and a common
variance σ2

0 ≥ 0. This model is a generalization of the functional and structural
models: when σ0 = 0, it reduces to the functional model (with µi = x̃i), and
when µ1 = · · · = µn(= µ0), it reduces to the structural model (with a normal
distribution of x̃i).

The ultrastructural model happens to be very convenient in the theoretical
studies of linear errors-in-variables regression, but no one yet applied it to the
problem of fitting geometric curves, such as circles or ellipses. The reason for this
is made clear in the next section.

6.2. Comparative analysis of statistical models

Drawbacks of the functional model. A major objection against the use
of the functional model is that the number of its parameters grows with n, which
makes the asymptotical analysis (as n → ∞) of estimators difficult, cf. Chap-
ter 1 and Chapter 2, where we have discussed the line fitting problem at length.
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However, in image processing applications, it is more natural to keep n fixed
and consider the limit σ → 0, see our discussion in Section 2.5; this asymptotic
scheme causes no conflicts with the functional model.

Another possible concern with the functional model is that the statistical
properties of the estimates of the principal parameters θ1, . . . , θk (in particular,
formulas for their biases, covariance matrix, and Cramer-Rao lower bounds) de-
pend on the location of the true points, which are unobservable. This, however,
is not a major issue in applications; in practice it is common to substitute either
the observed points (xi, yi), or their projections onto the fitted curve, for the
unknown (x̃i, ỹi); and such a substitution gives a reasonable approximation.

Drawbacks of the structural model. In the studies of fitting straight
lines to data, many statisticians prefer the more elegant structural model to
the somewhat cumbersome functional model. However when one fits nonlinear
contours, especially circles or ellipses, to data, the structural model becomes more
awkward, see below.

The main reason for the awkwardness of the structural model is that the true
points x̃i’s and ỹi’s have to be chosen on the true contour (such as a circle or an
ellipse); so they cannot have a normal distribution because their coordinates are
restricted by the size of the contour. Thus one has to use other (non-normal)
distributions, which are concentrated on the contour (circle or ellipse). Perhaps
the most natural choice would be a uniform distribution on the entire contour
(with respect to the arc length on it), and indeed uniform distributions were used
in early works [18, 31]. But they cannot cover many practically important cases,
especially those where the data are observed along a small arc (this happens when
only an occluded circle or ellipse is visible).

Von Mises distribution.Circular statistics, which deals with probability
distributions concentrated on a circle, offers an analogue of the normal law: the
so-called von Mises distribution (also called circular normal distribution); it
has a bell-shaped density on the circumference, and its spread over the circle is
controlled by a ‘concentration parameter’ κ ≥ 0, see [18, 16] . Its density on the
circle (parameterized by an angular variable ϕ ∈ [0, 2π]) is

f(ϕ) =
exp

[
κ cos(ϕ− µ)

]
2πI0(κ)

,

where µ is the center of the distribution and I0(κ) is the modified Bessel function
of order 0. When κ = 0, it turns to a uniform distribution on the entire circle;
and when κ grows the density peaks at ϕ = µ.

Simulated examples.Figure 6.1 shows n = 100 points (crosses) generated
on the unit circle with a von Mises distribution centered at µ = 0 and having
the concentration κ = 1. We see that the points mostly cluster near the right
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Figure 6.1. n = 100 random points (red crosses) on the unit
circle generated by a von Mises distribution with µ = 0 and κ = 1.

end (where ϕ = 0), but occasionally appear on the left side, too. Perhaps such
distributions describe some practical applications, but not such a common situ-
ation where the observed points are evenly spread along an arc, with the rest of
the circle (ellipse) totally invisible, see Figure 6.2. In the last case a uniform dis-
tribution on the arc seems much more appropriate, but every statistician knows
how inconvenient uniform densities are in theoretical analysis.
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Figure 6.2. n = 50 random points (red crosses) on the unit circle
generated by a uniform distribution on the arc |ϕ| ≤ π/4.

Thus it appears that there is no probability distributions concentrated on
a circle or an ellipse that would adequately represent the majority of practical
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applications and be acceptable in theoretical studies. For these reasons practi-
tioners prefer to rely on the functional model almost exclusively. We will restrict
our further studies to he functional model (except for the end of Section 6.3).

6.3. Maximum Likelihood Estimators (MLE)

MLE in the functional model. In the previous section we described two
models, which are the most appropriate for the studies of fitting geometric curves
to data: the Cartesian functional model (the principal one) and the radial func-
tional model (an alternative one). In both models the noise is assumed to have
normal distribution.

Theorem 6.1. In both functional models (Cartesian and radial), the Maximum
Likelihood Estimator (MLE) of the primary parameters θ1, . . . , θk is attained on
the curve that minimizes the sum of squares of orthogonal distances to the data
points.

Historical remarks. For the Cartesian functional model, the equivalence of
the MLE and the geometric fit is known. In the simplest case of fitting straight
lines to data, this fact is straightforward, and statisticians established it as early
as the 1930s, see [113] and [126] . In the general case of fitting nonlinear curves
to data, this fact is less apparent and its proof requires an indirect argument. To
our knowledge, the first complete proof was published by Chan [31] in 1965.

Despite this, the equivalence of the MLE and the geometric fit does not seem
to be widely recognized by the applied community, it is rarely mentioned in the
literature, and some authors rediscover it independently from time to time [34] .
For the alternative radial functional model we could not locate a proof of this
fact at all. Thus we provide a proof of the above theorem in full.

Proof . The joint probability density function of the observations is

f(x1, y1, . . . , xn, yn) =
1

(2πσ2)m/2
exp

[
− 1

2σ2

n∑
i=1

(xi − x̃i)
2 + (yi − ỹi)

2
]

=
1

(2πσ2)m/2
exp

[
− 1

2σ2

n∑
i=1

‖xi − x̃i‖2
]

(6.4)

In the Cartesian model, the coordinates (xi, yi) make 2n independent variables,
hence m = 2n. In the radial model, each data point (xi, yi) is restricted to the
line perpendicular to the curve P (x, y;Θ) = 0 passing through the true point
(x̃i, ỹi), hence m = n.

We note that Θ is not explicitly involved in (6.4), which calls for an indirect
approach to the maximum likelihood estimation. For convenience, we introduce a
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parameter t on the curve P (x, y;Θ) = 0, then it can be expressed by parametric
equations

x = u(t;Θ) and y = v(t;Θ)

(the functions u and v do not have to be known explicitly; it is enough that they
exist). Then each x̃i can be replaced by the corresponding parameter value t̃i,
i = 1, . . . , n. Note that t1, . . . , tn are unconstrained parameters.

Now the negative log-likelihood function is

− log L(Θ, σ2, t1, . . . , tn) = ln(2πσ2)m/2

+
1

2σ2

n∑
i=1

(
xi − u(ti;Θ)

)2
+

(
yi − v(ti;Θ)

)2
,(6.5)

where Θ appears explicitly, along with the nuisance parameters t1, . . . , tn.
To minimize (6.5) we use the following simple minimization-in-steps tech-

niques, as described by Chan [31]. If h(X, Y ) is a function on A × B, where
X ∈ A and Y ∈ B, then

min
A×B

h = min
A

(
min

B
h
)

(provided all the minima exist).
Accordingly, we can minimize (6.5) in two steps:

Step 1. Minimize (6.5) with respect to t1, . . . , tn when Θ and σ2 are kept fixed.

Step 2. Minimize the resulting expression with respect to Θ and σ2.

In Step 1 the curve P (x, y;Θ) = 0 is kept fixed, and the minimum of (6.5)
with respect to t1, . . . , tn is obviously achieved if

(
x(ti;Θ), y(ti;Θ)

)
is the point

on the curve closest to the observed point (xi, yi), i.e.

(6.6) min
t1,...,tn

n∑
i=1

(
xi − u(ti;Θ)

)2
+

(
yi − v(ti;Θ)

)2
=

n∑
i=1

[di(Θ)]2,

where di(Θ) denotes the geometric (orthogonal) distance from the point (xi, yi)
to the curve P (x, y;Θ) = 0. If the curve is smooth, then the line passing through
the points (xi, yi) and (u(ti;Θ), v(ti;Θ)) crosses the curve orthogonally. The last
fact is important for the radial model, as it requires that the point (xi, yi) lies on
the line orthogonal to the curve passing through the true point; we see that this
requirement will be automatically satisfied.

Lastly in Step 2 the estimate of Θ is obtained by minimizing (6.6). Thus we
get a curve that minimizes the sum of squares of the distances to the data points.
The theorem is proved. �

We denote by Θ̂MLE the maximum likelihood estimator. As we have just
proved, in the functional model it is always obtained by the geometric fit, i.e. by
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minimizing the sum of squares of the distances from the data points to the curve.

MLE in the structural model. Though the structural model is less ap-
propriate for image processing applications, we devote a brief discussion of the
maximum likelihood estimation in its context. Quite unexpectedly, in that model
the Maximum Likelihood Estimator is different from the geometric fit, even if
the noise has a Gaussian distribution. We illustrate this fact by a rather striking
example.

Example. Consider the problem of fitting a circle to data and suppose the
distribution of the true points on the true circle is uniform (the least fanciful
assumption). Let ρ and θ denote the polar coordinates attached to the center
of the true circle. Then, in the radial structural model, the probability density
function g(ρ, θ) of an observable at the point (ρ, θ) will be

g(ρ, θ) =
1

2π

1

(2πσ2)1/2
exp

[
−(ρ−R)2

2σ2

]
,

where R is the circle’s radius. In the xy coordinates the density becomes

f(x, y) =
1

2π(d + R)

1

(2πσ2)1/2
exp

[
− d2

2σ2

]
,

where d =
√

(x− a)2 + (y − b)2 − R denotes the signed distance from the point
to the true circle. Note that the extra factor d + R comes from the Jacobian.

For simplicity, assume that σ is known. Since the observations are indepen-
dent, the negative log-likelihood function is

− log L(a, b, R) =
∑

i

ln(di + R) +
∑

i

d2
i

2σ2

(the constant terms are omitted).
Now suppose that the data points lie on the true circle. Then the geometric fit

will return the true circle (and so does every algebraic fit discussed in Chapter 5).
We will see next that the MLE picks a different circle.

For the true circle, di = 0, hence the negative log-likelihood is

− log L(ã, b̃, R̃) = n ln R̃.

Suppose, in addition, that the data points are clustered along a small arc on the
right hand (east) side of the circle; for example let

xi = ã + R̃ cos
(
δ(i/n− 1/2)

)
, yi = b̃ + R̃ sin

(
δ(i/n− 1/2)

)
,

for i = 1, . . . , n, where δ > 0 is small, see Figure 6.3. Now consider a circle with
parameters (ã + ε, b̃, R̃). For that circle di = −ε +O(εδ2), therefore

− log L(ã + ε, b̃, R̃) = n ln(R̃)− R̃−1nε +O(nR−1εδ2) +O(nσ−2ε2).
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Figure 6.3. Five data points lie on the true circle (the blue solid
line), but the MLE returns a different circle (the red dashed line).

It is clear that this function decreases when ε is a small positive number and
takes its minimum at ε ∼ σ2/R. Thus the MLE fails to find the true circle, even
if the true points are observed without noise.

General comments on the MLE for the structural model. Our ex-
ample may give an impression that the Maximum Likelihood Estimators for the
structural model are ill-behaved, but this is actually not true. General theo-
rems in statistics guarantee that the MLE have optimal asymptotic properties,
as n →∞; they are consistent, asymptotically normal, and efficient (have asymp-
totically minimal possible variance).

A detailed investigation of the MLE, in the context of the structural model
for the circle fitting problem, was done in a series of papers by Anderson [6] and
Berman and Culpin [16, 18] in the 1980s. They performed an approximative
analysis, aided by numerical experiments, which confirmed the excellent behavior
of the MLE in the limit n → ∞. In fact the MLE were found to have smaller
variance than that of the geometric circle fit, and even more so if compared to
the K̊asa algebraic fit (Section 5.1). When the noise is large (and n is large), the
variance of the MLE may be several times smaller than that of the geometric fit
[16].

On the other hand, these studies also demonstrate difficulties in the practical
computation of the MLE. Anderson [6] describes the MLE by explicit equations
only in the simplest case, where the true points are uniformly distributed on
the entire circle; even in that case the MLE equations involve modified Bessel
functions defined by infinite power series. For other distributions of the true
points on the circle, no equations describing the MLE are derived and no practical
algorithms for computing the MLE are proposed.

Thus it appeared, at least back in the 1980s, that the structural model MLE,
despite having superb statistical properties, were hopelessly impractical. Since
then they remain abandoned. Though perhaps now, or in the near future, with
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more powerful computer resources and software, the structural model MLE of the
circle parameters can be revisited and rehabilitated. This interesting approach
promises an estimator superior to the geometric fit, at least in some situations.

6.4. Distribution and moments of the MLE

After adopting certain models for the distribution of observables (Section 6.1
and Section 6.2) and deriving the corresponding MLE (Section 6.3), we can pro-
ceed to the main goals of our statistical analysis. In traditional statistics, estima-
tors of unknown parameters are characterized by their probability distributions
and especially by their moments; the moments provide such important charac-
teristics as the bias, variance, and mean squared error of an estimate.

Unfortunately, this traditional approach runs into formidable difficulties aris-
ing from the nature of our problem; these difficulties are described and illustrated
in this section. They prompt statisticians to develop alternative approaches based
on various approximations, we will present them in the subsequent sections.

Exact distribution of the MLE. Due to the complexity of the curve fit-
ting problems the exact distributions and moments of the maximum likelihood
estimators cannot be determined in most cases. Even for the simplest task of
fitting a straight line

y = α + βx

to observed points, the distributions of the MLE α̂ and β̂ are given by overly com-
plicated expressions, which involve doubly infinite power series whose coefficients
depend on incomplete Beta functions; see [7].

Exact formulas for the density functions of α̂ and β̂ were derived in 1976
by Anderson [7, 10] who readily admitted that they were ‘not very informative’
[8] and ‘not very useful’ [7]. Instead, Anderson employed Taylor expansion to

approximate the distribution function of β̂, which allowed him to investigate some
practical features of this estimator; see our Chapter 2 for a more detailed account.

In the case of fitting nonlinear curves, such as circles and ellipses, there are
no explicit formulas of any kind for the maximum likelihood estimators them-
selves, let alone their probability densities. To our best knowledge, no one has
ever attempted to describe the exact distributions of the corresponding MLE (al-
though for the circle fitting problem, some related distributions were studied in
[6, 18, 31]).

Now, since exact probability distributions of the MLE are unavailable, one has
to follow Anderson [7, 10] and employ Taylor expansion to construct reasonable
approximations; we will do that in Section 6.6.

Moments of the MLE. Because exact distributions of the MLE’s are in-
tractable, one cannot derive explicit formulas for their moments either (with a
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few exceptions, though, see next). For example, if one fits a straight line

x cos ϕ + y sin ϕ + C = 0,

then the distribution of the MLE ϕ̂ happens to be symmetric about its true
value ϕ̃ (Section 2.4), hence E(ϕ̂) = ϕ̃; in this rare case the first moment can be
found precisely. However, there are no explicit formulas for Var(ϕ̂) even in this
case. There are no exact formulas for E(C) or Var(C) either, they can only be
determined approximately, as we did in Chapter 2.

Furthermore, there is an even more disturbing fact about the moments of
MLE’s, which may not be easy to ‘digest’. Namely, if one describes the straight
line by y = α + βx, then the moments of the corresponding MLE, α̂ and β̂, do
not even exist, i.e.

E(|α̂|) = E(|β̂|) = ∞.

This means that these estimators have no mean values or variances. This fact
was established by Anderson [7] in 1976, see our Section 1.6.

Anderson’s discovery was rather striking; it was followed by heated discussions
and a period of acute interest in the linear EIV problem. The basic question
was: are the MLE α̂ and β̂ statistically acceptable given that they have infinite
mean squared error? (Well, not to mention infinite bias...) And what does the
nonexistence of moments mean anyway, in practical terms?

To answer these questions, Anderson, Kunitomo, and Sawa [7, 10, 118] used
Taylor expansions up to terms of order 3 and 4 to approximate the distribution
functions of the MLE; and the resulting approximate distributions had finite
moments. Those approximations remarkably agreed with numerically computed
characteristics of the actual estimators (in simulated experiments), at least in
all typical cases (see an exception below). Anderson and Sawa [10] noted that
their approximations were ‘virtually exact’. We will employ the approximation
techniques to more general curves in Section 6.6.

An artificial example. To illustrate the idea of Anderson’s approximative
approach, consider a scalar estimate θ̂ whose density function f is a mixture,

f = (1− p)f0 + pf1,

where

f0(x) =
1

(2πσ2
0)

1/2
exp

[
−(x− µ0)

2

2σ2
0

]
is a normal density N(µ0, σ

2
0) and

f1(x) =
1

π(1 + x2)

is the standard Cauchy density. This estimate has infinite moments for any p > 0,
but if p is very small, then in all practical terms θ̂ behaves as a normal random
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variable N(µ0, σ
2
0), its Cauchy component is barely visible. For example, if p ∼

10−9, then in every sequence of a billion observed random values of θ̂ typically
just one (!) happens to come from the non-normal (Cauchy) distribution, so in
real data processing it would be hardly noticeable at all.

In this case the approximation f ≈ f0 appears to be ‘virtually exact’, in An-
derson’s words. One can further speculate that the mean value E(θ̂) can be well

approximated by µ0 and the variance Var(θ̂) by σ2
0; and such ‘approximations’

would perfectly agree with simulated experiments and perhaps would be accept-
able for all practical purposes. (On the other hand, theoretically, E(θ̂) and Var(θ̂)
are infinite, hence they are not approximated by µ0 and σ2

0.)
Our example demonstrates that the non-existence of moments may be an

issue of a pure academic interest, whereas for practical purposes one may use the
moments of properly constructed approximative distributions. Of course, if p in
our example is not negligible, i.e. if the ‘bad’ component of the distribution of θ̂
becomes ‘visible’, then the above approximations will no longer be adequate, and
the estimate θ̂ behaves poorly in practice.

In the linear fitting problem, the breakdown of Anderson’s approximative ap-
proach occurs when the noise level σ becomes very large. Our tests show that
this happens when σ is far beyond its level typical for most image processing
applications. We recall our illustration in Figure 1.8 demonstrating erratic be-
havior of the MLE β̂ (thus experimentally revealing its infinite moments): there
we simulated n = 10 data points on a stretch of length 10 along a true line, and
the noise level was set to σ = 2.4. In other words, σ was 24% of the size of line
segment containing the true points (while in typical computer vision applications
σ does not exceed 5% of the size of the figure fitting the data set, cf. [17]). We
had to set the noise level so high, i.e. to σ = 2.4, because for its smaller values,
i.e. for σ ≤ 2.3, the estimate β̂ behaved as if it had finite moments (the solid line
in Figure 1.8 was just flat).

Moments of circle parameter estimates. It was recently discovered [41]
that the MLE of the circle parameters (a, b, R) have infinite moments, too, i.e.

(6.7) E(|â|) = E(|b̂|) = E(R̂) = ∞,

thus the situation here is similar to the linear EIV regresion problem. To illustrate
this fact we generated 106 random samples of n = 10 points along a semicircle of
radius one with a Gaussian noise at level σ = 0.58. Figure 6.4 plots the average
maximum likelihood estimate R̂ over k samples, as k runs from 1 to 106 (the
blue solid line). It behaves erratically, like the average estimate of the slope β in
Figure 1.8. Note again that the noise level is very high, it is 29% of the circle
size, because σ/(2R) = 0.29. We had to set the noise level so high because if



6.4. DISTRIBUTION AND MOMENTS OF THE MLE 151

σ ≤ 0.57, the estimate R̂ behaved as if it had finite moments (the solid line in
Figure 6.4 was just flat).

It is interesting that the circle parameter estimates (â0, b̂0, R̂0) obtained by
the K̊asa method (Section 5.1) have finite mean values whenever n ≥ 4 and finite
variances whenever n ≥ 5; this fact was recently proved by Zelniker and Clarkson
[196]. In Figure 6.4, the average K̊asa estimate R̂0 is the green dotted line, its
value remains near a constant, 0.48, confirming that it has finite moments.

We note that both estimates (the geometric fit and the K̊asa fit) are heavily
biased. The biasedness of the K̊asa fit toward smaller circles was explained in
Section 5.3; the biasedness of the MLE toward larger circles will be discussed in
Section 6.10 and Chapter 7.
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Figure 6.4. The performance of the MLE and the K̊asa fit for circles.

As it turns out, the circle parameter estimates obtained by the Pratt and
Taubin methods (Chapter 5) also have finite or infinite moments. It appears
that the non-existence of moments of maximum likelihood estimates in geometric
fitting problems is a rather general fact whenever one describes the fitted contour
by naturally unbounded geometric parameters (such as the coordinates of the
center, the dimensions, etc.). In such a generality, this fact remains to be proven,
particularly in the context of fitting ellipses.

Of course, one can choose parameters of the fitting curve so that they are
naturally bounded, and hence their estimates will have finite moments. For
example, when the fitting line is described by x cos ϕ + y sin ϕ + C = 0, then
0 ≤ ϕ ≤ 2π is bounded. Concerning C, it represents the distance from the
line to the origin (Section 2.1); though C is not truly bounded, its estimate has
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distribution with a tail similar to that of a normal density, hence all its moments
are finite.

Similarly, a circle can be described by an algebraic equation

A(x2 + y2) + Bx + Cy + D = 0

with four parameters A, B, C,D subject to constraint B2+C2−4AD = 1, cf. (3.8)
and (3.10). We have proved in Section 3.2 that the maximum likelihood estimates
of A, B, C,D are essentially restricted to a finite box, cf. (3.16); now it takes a
little extra work (we omit details) to verify that the estimates of A, B, C,D have
finite moments.

6.5. General algebraic fits

Here we discuss curve fitting methods that are different from maximum likeli-
hood estimation, i.e. from geometric fitting. Such methods are used in two ways,
as it is explained in the beginning of Chapter 5. First, they supply an accurate
initial guess to the subsequent iterative procedures that find the MLE. Second,
they provide a fast inexpensive fit in applications where the geometric fitting
procedures are prohibitively slow.

Simple algebraic fit. Perhaps the simplest non-geometric fit is the one
minimizing

(6.8) F1(Θ) =
n∑

i=1

[P (xi, yi;Θ)]2.

To justify this method one notes that P (xi, yi;Θ) = 0 if and only if the point
(xi, yi) lies on the curve; also, [P (xi, yi;Θ)]2 is small if and only if the point lies
near the curve. If we fit a circle P = (x−a)2+(y−b)2−R2, then the minimization
of (6.8) brings us back to the popular K̊asa fit described in Section 5.1.

Oftentimes, P is a polynomial in Θ, then F1(Θ) is also a polynomial in Θ,
so its minimization is a fairly standard algebraic problem. For this reason the
method (6.8) is called a simple algebraic fit.

Modified algebraic fit. In many fitting problems, P (x, y;Θ) is a polynomial
in x and y, too, and the parameter vector Θ is made by its coefficients. For
example, a conic (ellipse, hyperbola) can be specified by

(6.9) P (x, y;Θ) = θ1 + θ2x + θ3y + θ4x
2 + θ5xy + θ6y

2 = 0.

In such cases F1(Θ) is a quadratic form of Θ, i.e. (6.8) minimizes

(6.10) F1(Θ) = ΘTMΘ,

where M is a symmetric positive semi-definite matrix computed from the data
(xi, yi), 1 ≤ i ≤ n.
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Note that the parameter Θ only needs to be determined up to a scalar mul-
tiple, because the desired curve P (x, y;Θ) = 0 is the zero set of the function P ,
and it is not affected by the rescaling of Θ.

To avoid the trivial (and irrelevant) solution Θ = 0 one can impose a con-
straint on Θ. For example, one can set one of the coefficients of the polyno-
mial to one, e.g. one can put θ1 = 1 in (6.9). Alternatively, one can require
‖Θ‖ = 1, or more generally ΘTNΘ = 1, where N is some symmetric constraint
matrix. (Note that the constraint θ1 = 1 is equivalent to ΘTNΘ = 1 with
N = [1, 0, . . . , 0]T × [1, 0, . . . , 0].) The matrix N may be constant (as in the K̊asa
and Pratt fits) or data-dependent (as in the Taubin fit).

Now one arrives at a constrained minimization problem:

(6.11) Θ̂ = argminΘTMΘ, subject to ΘTNΘ = 1.

Introducing a Lagrange multiplier η, as in Section 5.5, gives

(6.12) MΘ = ηNΘ

thus Θ must be a generalized eigenvector of the matrix pair (M,N). As the
parameter Θ only needs to be determined up to a scalar multiple, we can solve
(6.12) subject to additional constraint ‖Θ‖ = 1.

Gradient-weighted algebraic fit (GRAF). Unfortunately, for curves other
than circles, the simple algebraic fit (6.8), or a modified algebraic fit (6.10) with
any constraint matrix N, has poor statistical properties, because the values
[P (xi, yi;Θ)]2 minimized by (6.8) have little or no relevance to the geometric
distances from (xi, yi) to the curve, thus the resulting estimates have little or no
relevance to the MLE.

To improve the accuracy of (6.8), one usually generalizes it by introducing
weights wi and minimizes

(6.13) F2(Θ) =
n∑

i=1

wi [P (xi, yi;Θ)]2

This modification of (6.8) is called the weighted algebraic fit. The weights wi =
w(xi, yi;Θ) may depend on the data and the parameters.

A smart way to define weights wi results from the linear approximation

|P (xi, yi;Θ)|
‖∇xP (xi, yi;Θ)‖

= di +O(d2
i )

where ∇xP =
(
∂P/∂x, ∂P/∂y

)
denotes the gradient vector. Thus one can con-

struct an ‘approximate geometric fit’, to the leading order, by minimizing

(6.14) F3(Θ) =
n∑

i=1

[P (xi, yi;Θ)]2

‖∇xP (xi, yi;Θ)‖2
.
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This is a particular case of the weighted algebraic fit (6.13) with weights set to

(6.15) wi =
1

‖∇xP (xi, yi;Θ)‖2
.

The method (6.14) is called the gradient weighted algebraic fit, or GRAF for
brevity.

History and implementations of GRAF. The GRAF is known since at
least 1974 when it was mentioned in Turner’s book [183]. It was applied specif-
ically to quadratic curves (ellipses and hyperbolas) by Sampson [163] in 1982
and popularized by Taubin [176] in 1991. Now it has become standard in the
computer vision industry; see [47, 95, 120, 198] and references therein.

If P (x, y;Θ) is a polynomial in x and y and the parameter vector Θ is made
by its coefficients (such as in (6.9)), then both numerator and denominator in
(6.14) are quadratic forms in Θ, i.e.

(6.16) F3(Θ) =
n∑

i=1

ΘTMiΘ

ΘTNiΘ
,

where Mi and Ni are positive semi-definite matrices computed from (xi, yi). Note
that both numerator and denominator in (6.16) are homogeneous quadratic poly-
nomials in the parameters, hence F3(Θ) is invariant under rescaling of Θ, so its
minimization does not require any additional constraints.

In most cases, the minimization of (6.16) is a nonlinear problem that has no
closed form solution. There exist several powerful iterative schemes for solving
it, though, and they will be described in the context of fitting ellipses. In any
case, the computational cost of GRAF if much lower than that of the geometric
fit (the MLE), so currently GRAF is the method of choice for practice fitting of
ellipses or more complex curves.

The statistical accuracy of GRAF is the same as that of the MLE, to the
leading order, as we will see in Section 6.9.

GRAF for circles. The algebraic equation of a circle is

P (x, y;Θ) = A(x2 + y2) + Bx + Cy + D = 0,

hence

∇xP (x, y;Θ) = (2Ax + B, 2Ay + C)

and

‖∇xP (xi, yi;Θ)‖2 = 4Az2
i + 4ABxi + 4ACyi + B2 + C2

= 4A(Azi + Bxi + Cyi + D) + B2 + C2 − 4AD.
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Thus the GRAF reduces to the minimization of

(6.17) F(A, B, C,D) =
n∑

i=1

[Azi + Bxi + Cyi + D]2

4A(Azi + Bxi + Cyi + D) + B2 + C2 − 4AD

Just like (6.16), this is a nonlinear problem that can only be solved iteratively.
The Pratt and Taubin algorithms (Chapter 5) can be regarded as approximate
solutions to this problem. Indeed, assuming that the data points (xi, yi) lie close
to the circle, one gets Azi + Bxi + Cyi + D ≈ 0. Thus one can simply discard
this sum from the denominator of (6.17), which gives us the Pratt fit (5.21).
Alternatively, one can averages all the denominators in (6.17), which gives us the
Taubin fit; see (5.45).

6.6. Error analysis: a general scheme

In Section 6.4 we have shown that the exact statistical properties of the MLE
in the curve fitting problems are intractable. Unfortunately, much the same
remains true for algebraic fits as well, including GRAF. Here we develop an
approximative error analysis for curve fitting algorithms. This analysis will allow
us to determine their statistical characteristics, to a reasonable extend, and draw
practically valuable conclusions.

Notation and assumptions. Let Θ̂(x1, . . . ,xn) be an estimate of the un-
known parameter vector Θ = (θ1, . . . , θk)

T based on n independent observations
xi = (xi, yi), i = 1, . . . , n. We assume that it is a regular (at least four times
differentiable) function of xi’s and yi’s.

For brevity we denote by X = (x1, y1, . . . , xn, yn)T the vector of all our obser-
vations, so that

X = X̃ + E,

where

X̃ = (x̃1, ỹ1, . . . , x̃n, ỹn)T

is the vector of the true coordinates and

E = (δ1, ε1, . . . , δn, εn)T

is the vector of their random perturbations. Recall that in the Cartesian func-
tional model (Section 6.1) the components of E are i.i.d. normal random variables
with mean zero and variance σ2.

Taylor expansion. We will use Taylor expansion to the second order terms.
To keep our notation simple, we work with each scalar parameter θm of the vector
Θ separately:

(6.18) θ̂m(X) = θ̂m(X̃) + GT
mE + 1

2
ETHmE +OP (σ3).
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Here

Gm = ∇θ̂m and Hm = ∇2θ̂m

denote the gradient (the vector of the first order partial derivatives) and the

Hessian matrix of the second order partial derivatives of θ̂m, respectively, taken
at the true vector X̃.

The remainder term OP (σ3) in (6.18) is a random variable R such that σ−3R
is bounded in probability; this means that for any ε > 0 there exists Aε > 0 such
that Prob{σ−3R > Aε} < ε for all σ > 0. Of course, the remainder term may
have infinite moments, but its typical values are of order σ3, so we will ignore it
in our analysis. The first and second order terms in (6.18) have typical values of
order σ and σ2, respectively, and their moments are always finite (because E is
a Gaussian vector).

If we do the expansion (6.18) for the whole vector Θ̂, then Gm would be
replaced by an m× n matrix of the first order partial derivatives, but Hm would
become a 3D tensor of the second partial derivatives; to avoid notational compli-
cations related to tensor products we deal with each component θm separately.

Geometric consistency. Expansion (6.18) shows that Expansion (6.18)

shows that Θ̂(X) → Θ̂(X̃) in probability, as σ → 0. It is convenient to assume
that

(6.19) Θ̂(X̃) = Θ̃.

Precisely (6.19) means that whenever σ = 0, i.e. the true points are observed
without noise, then the estimator returns the true parameter vector, i.e. finds
the true curve. Geometrically, (6.19) implies that if there is a curve of type (6.1)
that interpolates the data points, then the algorithm finds it.

With some degree of informality, one can assert that whenever (6.19) holds,

the estimate Θ̂ is consistent in the limit σ → 0. We call this property geometric consistency .

The assumption (6.19) is sometimes regarded a minimal requirement for any
sensible fitting algorithm. For example, if the observed points lie on one circle,
then every algorithm that we have discussed in Chapter 4 and Chapter 5 finds
that circle uniquely. Kanatani [100] remarks that algorithms which do not enjoy
this property “are not worth considering”.

We recall, however, that the Maximum Likelihood Estimators of the circle
parameters, in the context of the structural model, are not geometrically consis-
tent (Section 6.3), thus (6.19) is not automatically ensured for every estimator of
interest. But we will assume (6.19) in all that follows.

Bias and variance. Under our assumption (6.19) we rewrite (6.18) as

(6.20) ∆θ̂m(X) = GT
mE + 1

2
ETHmE +OP (σ3),
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where ∆θ̂m(X) = θ̂m(X)− θ̃m is the statistical error of the parameter estimate.
The first term in (6.20) is a linear combination of i.i.d. normal random vari-

ables (the components of E) that have zero mean, hence it is itself a normal
random variable with zero mean.

The second term is a quadratic form of i.i.d. normal variables (such forms
have been studied in probability, see e.g. [64, 88, 153, 154]). Since Hm is a
symmetric matrix, we have Hm = QT

mDmQm, where Qm is an orthogonal matrix
and Dm = diag{d1, . . . , d2n} is a diagonal matrix. The vector Em = QmE has the
same distribution as E does, i.e. the components of Em are i.i.d. normal random
variables with mean zero and variance σ2. Thus

(6.21) ETHmE = ET
mDmEm = σ2

∑
diZ

2
i ,

where the Zi’s are i.i.d. standard normal random variables. One can also regard
(6.21) as a generalization of the χ2 distribution; though it is not always positive,
as we may have di < 0 for some i’s. In any case, the mean value of (6.21) is

E
(
ETHmE

)
= σ2 trDm = σ2 trHm.

Therefore, taking the mean value in (6.20) gives the bias of θ̂m:

(6.22) E(∆θ̂m) = 1
2
σ2 trHm +O(σ4).

We use the fact that the expectations of all third order terms vanish, because the
components of E are independent and their first and third moments are zero; thus
the remainder term is of order σ4. In fact the expectations of all odd order terms
vanish, because the distribution of the components of E is symmetric about zero.

Next, squaring (6.20) and again using (6.21) give the mean squared error

(6.23) E
(
[∆θ̂m]2

)
= σ2GT

mGm + 1
4
σ4

(
[trHm]2 + 2‖Hm‖2

F

)
+R.

Here

(6.24) ‖Hm‖2
F = trH2

m = ‖Dm‖2
F = trD2

m

where ‖ · ‖F stands for the Frobenius norm (it is important to note that Hm is
symmetric). The remainder R includes terms of order σ6, as well as some terms

of order σ4 that contain third order partial derivatives, such as ∂3θ̂m/∂x3
i and

∂3θ̂m/∂x2
i ∂xj. A similar expression can be derived for E

(
∆θ̂m∆θ̂m′

)
for m 6= m′,

we omit it and only give the final formula below.
Comparing (6.22) and (6.23) we conclude that

(6.25) Var(θ̂m) = σ2GT
mGm + 1

2
σ4‖Hm‖2

F +R.

Thus, the two forth order terms in the MSE expansion (6.23) have different
origins: the first one, 1

4
σ4[trHm]2, comes from the bias, and the second one,

1
2
σ4‖Hm‖2

F , comes from the variance.
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Covariances. The above formulas can be easily extended to the cross product
terms:

E
(
(∆θ̂m)(∆θ̂m′)

)
= σ2GT

mGm′ + 1
4
σ4

[
(trHm)(trHm′)

+ 2〈Hm,Hm′〉F
]
+R,(6.26)

where 〈Hm,Hm′〉F = tr(HmHm′) stands for the ‘Frobenius’ scalar product of
matrices (again we note that Hm′ is symmetric). Comparing (6.22) and (6.26)
we conclude that

(6.27) Cov(θ̂m, θ̂m′) = σ2GT
mGm′ + 1

2
σ4〈Hm,Hm′〉F +R.

Just as before, the first O(σ4) term in (6.26) comes from the biases, while the
second one comes from the covariance.

6.7. A model with small noise and ‘moderate sample size’

Our approximate error analysis in Section 6.6 includes all the terms of order
σ2 and σ4. In applications, one usually gets a large number of terms of order
σ4 given by complicated formulas; we will see examples in Chapter 7. Even the
expression for the bias (6.22) alone may contain several terms of order σ2. In this
section we sort the higher order terms out to keep only the most significant ones.
Our sorting method is motivated by Kanatani [104].

Kanatani’s treatment of higher order terms. Kanatani [104] recently
derived formulas for the bias of certain ellipse fitting algorithms. He kept all
the terms of order σ2, but in the end he noticed that some terms were of order
σ2 (independent of n), while the others of order σ2/n. The magnitude of the
former was clearly larger than that of the latter, and when Kanatani made his
final conclusions he ignored the terms of order σ2/n. To justify this discretion,
he simply noted that ‘in many vision applications n is fairly large’.

Formal classification of higher order terms. We formalize Kanatani’s
prescription for treating higher order terms in the approximate error analysis,
and adopt the following rules:

(a) In the expression for the bias (6.22) we keep terms of order σ2 (indepen-
dent of n) and ignore terms of order σ2/n.

(b) In the expression for the mean squared error (6.23) we keep terms of
order σ4 (independent of n) and ignore terms of order σ4/n.

In the strict mathematical sense, to justify our rules we would need to assume
that not only σ → 0, but also n → ∞, although n may increase rather slowly.
Precisely, n need to grow slower that 1/σ2. For simplicity, however, we prefer to
treat σ as small variable and n as a moderately large constant. We call this a
model with small noise and moderate sample size.
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Magnitude of various terms. The main term σ2GT
mGm in our expression

for the mean squared error (6.23) is always of order σ2/n; it will never be ignored.
Out of the two higher order terms 1

4
σ4[trHm]2 and 1

2
σ4‖Hm‖2

F , the latter is
always of order σ4/n (under certain natural conditions), hence it will be discarded.
The bias σ2 trHm in (6.22) is, generally, of order σ2 (independent of n), thus its
contribution to the mean squared error (6.23) is significant. However the full
expression for the bias may contain terms of order σ2 and of order σ2/n, of which
the latter will be ignored; see below.

We only explain why our terms have the above order or magnitude, omitting
a formal proof, which is quite complex.

Analysis of the order of magnitude. We make a natural assumption that
the estimate Θ̂ is balanced in the sense that every observation xi contributes to
it equally. More precisely, the partial derivatives of Θ̂(X) with respect to the
components of X must have the same order of magnitude.

For example, all our circle fits are balanced, in this sense, as they are based
on averaging observations. In particular, the geometric circle fit minimizes a2 +
b2 − r̄2, recall (4.25). The K̊asa fit solves the system (5.5) that involve averages,
too.

Under this assumption it is easy to see that the partial derivatives of Θ̂(X)
with respect to the components of X are O(1/n). For example, if one perturbs
every data point by ε � σ, then the center and radius of the fitting circle should
change by O(ε). On the other hand, ∆Θ̂ = 〈∇XΘ̂, ∆X〉 + O(ε2). As one can

always make the perturbation vector ∆X parallel to the gradient ∇XΘ̂, it follows
that ‖∆Θ̂‖ ≥ n1/2ε‖∇XΘ̂‖, thus ‖∇XΘ̂‖ ≤ n−1/2, i.e. each component of ∇XΘ̂
must be O(1/n).

This implies that the components of the vector Gm and the diagonal elements
of Dm in (6.23)–(6.24) are of order 1/n. As a result,

GT
mGm = O(1/n)

and also

trHm = trDm = O(1)

and

‖Hm‖2
F = ‖Dm‖2

F = O(1/n).

Also recall that the remainders denoted by R in our expansions include some
terms of order σ4 that contain third order partial derivatives; those derivatives
can be shown to have order of 1/n.

Thus the terms in (6.23) have the following orders of magnitude:

(6.28) E
(
[∆θ̂m]2

)
= O(σ2/n) +O(σ4) +O(σ4/n) +O(σ6),

where each big-O simply indicates the order of the corresponding term in (6.23).
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σ2/n σ4 σ4/n σ6

small samples (n ∼ 1/σ) σ3 σ4 σ5 σ6

large samples (n ∼ 1/σ2) σ4 σ4 σ6 σ6

Table 6.1. The order of magnitude of the four terms in (6.23).

We see that the fourth-order term 1
4
σ4[trHm]2 coming from the bias is larger

(hence more significant) than the other one, 1
2
σ4‖Hm‖2

F , that comes from the
variance.

The cross-product expansion (6.26) has a similar structure:

(6.29) E
(
(∆θ̂m)(∆θ̂m′)

)
= O(σ2/n) +O(σ4) +O(σ4/n) +O(σ6),

i.e. the fourth-order term coming from the biases is larger (hence more significant)
than the one coming from the covariance.

Example. In typical computer vision applications, σ does not exceed 5%
of the size of the image, see [17] (the value σ = 0.05 was used in most of our
simulated examples). The number of data points normally varies between 10-20
(on the low end) and a few hundred (on the high end). For simplicity, we can set
n ∼ 1/σ for smaller samples and n ∼ 1/σ2 for larger samples. Then Table 6.1
presents the corresponding typical magnitudes of each of the four terms in (6.23).
We see that for larger samples the fourth order term coming from the bias may be
just as big as the leading second-order term, hence it would be unwise to ignore
it.

Some earlier studies, see e.g. [17, 42, 66, 95], focused on the leading, i.e.
second-order terms only, disregarding all the fourth-order terms, and this is where
our analysis is different. We make one step further – we keep all the terms of
order O(σ2/n) and O(σ4). The less significant terms of order O(σ4/n) and O(σ6)
would be discarded.

Complete MSE expansion. Combining (6.26) for all 1 ≤ m, m′ ≤ k gives
a matrix formula for the (total) mean squared error (MSE)

(6.30) E
[
(∆Θ̂)(∆Θ̂)T

]
= σ2GGT + σ4BBT + · · · ,

where G is the k × 2n matrix of first order partial derivatives of Θ̂(X), its rows
are GT

m, 1 ≤ m ≤ k, and

B = 1
2
[ trH1, . . . trHk]

T

is the k-vector that represents the leading term of the bias of Θ̂, cf. (6.22). Our
previous analysis shows that GGT = O(1/n) and BBT = O(1), hence both
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terms explicitly shown in (6.30) are significant, by our adopted rules; the trailing
dots stand for all insignificant terms (those of order σ4/n and σ6).

We call the first (main) term σ2GGT in (6.30) the variance term, as it char-

acterizes the variance (more precisely, the covariance matrix) of the estimator Θ̂,
to the leading order. The second term σ4BBT comes from the bias σ2B of the
estimator, again to the leading order.

For brevity we denote the variance term by V = GGT .

Essential bias. A more detailed analysis of many particular estimators (see
[104] and our Chapter 7) reveal that the bias σ2B is the sum of terms of two
types: some of them are of order σ2 and some others are of order σ2/n, i.e.

E(∆Θ̂) = σ2B +O(σ4) = σ2B1 + σ2B2 +O(σ4),

where B1 = O(1) and B2 = O(1/n).

We call σ2B1 the essential bias of the estimator Θ̂. This is its bias to the
leading order, σ2. The other terms (i.e. σ2B2, and O(σ4)) constitute non-essential
bias; they can be dropped according to our adopted rules. Then (6.30) can be
reduced to

(6.31) E
[
(∆Θ̂)(∆Θ̂)T

]
= σ2V + σ4B1B

T
1 + · · · ,

where we only keep significant terms of order σ2/n and σ4 and drop the rest
(remember also that V = GGT ).

6.8. Variance and essential bias of the MLE

Our approximate error analysis in Section 6.6 and Section 6.7 is developed
for general parameter estimators, under a very mild assumption of geometric
consistency (6.19). In the circle and ellipse fitting case, our analysis applies to
all geometric and algebraic fits. In this section we focus on the geometric fit only,
i.e. on the Maximum Likelihood Estimators. For the MLE, explicit formulas can
be derived for the asymptotic variance matrix V and the essential bias vector B1

in (6.31).
In fact, such formulas were obtained in the 1980s by Amemiya, Fuller, and

Wolter [5, 192]. They studied the Maximum Likelihood Estimators for gen-
eral curve parameters in the context of the Cartesian functional model. Their
assumptions on n and σ were similar to ours, see below.

Amemiya-Fuller-Wolter asymptotic model. In their studies, Amemiya,
Fuller, and Wolter assume that both σ and n are variable, so that σ → 0 and
n →∞. Precisely, they consider a sequence of independent experiments, indexed
by m = 1, 2, . . .. In each experiment n = nm points are observed along a true
curve (the same for all experiments), with the noise level σ = σm > 0. They put

(6.32) σ−2
m nm = m,
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which simply gives a precise meaning to their index m. The reason for this nota-
tion as follows: suppose there are nm distinct true points on the true curve, and
each is observed independently km times, i.e. we have km replicated observations
of each true point, all with unit variance σ2 = 1. Then averaging those km ob-
servations of each true point gives a single observation with variance σ2

m = 1/km.
Now m = kmnm = σ−2

m nm represents the total number of the original (replicated)
observations.

Next they assume that nm →∞ and σm → 0, as m →∞, so that

σ2
mnm → 0 as m →∞,

i.e. n grows more slowly than 1/σ2. In the strict mathematical sense, these
assumptions are effectively equivalent to ours in Section 6.7, though we prefer to
treat n as a (moderately large) constant, and not as a variable.

Asymptotic variance of the MLE. Amemiya, Fuller and Wolter [5, 192]
investigate the Maximum Likelihood Estimator (i.e. the estimator obtained by
the geometric fit); they prove asymptotic normality and explicitly compute the
asymptotic covariance matrix, to the leading order (see Theorem 1 in [5]). In our
notation, their main result is

(6.33) m−1
(
Θ̂MLE − Θ̃

)
→L N

(
0,V∗

MLE

)
,

where

(6.34) V∗
MLE =

(
lim

m→∞

1

nm

n∑
i=1

PΘi P
T
Θi

‖Pxi‖2

)−1

,

assuming that the limit exists. Here

PΘi =
(
∂P (x̃i; Θ̃)/∂θ1, . . . , ∂P (x̃i; Θ̃)/∂θk

)T

stands for the gradient of P with respect to the model parameters θ1, . . . , θk and

Pxi =
(
∂P (x̃i; Θ̃)/∂x, ∂P (x̃i; Θ̃)/∂y

)T

for the gradient with respect to the spacial variables x and y; both gradients are
taken at the true point x̃i.

Given the equation of a curve P (x, y;Θ) = 0, both gradients can be computed
easily. For example in the case of fitting circles defined by

P = (x− a)2 + (y − b)2 −R2,

we have

PΘi = −2
(
(x̃i − ã), (ỹi − b̃), R̃

)T

and

Pxi = 2
(
(x̃i − ã), (ỹi − b̃)

)T
.
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By using (6.32) we can derive from (6.33) the asymptotic covariance matrix
of the MLE:

(6.35) Var(Θ̂MLE) = n−1
m σ2

mV∗
MLE + o(n−1

m σ2
m).

The existence of the limit in (6.34) effectively means that, as nm → ∞, there is
a certain pattern in the distribution of the true points on the true curve.

Finite sample variance of the MLE. In our model, where n is a constant,
we would like to describe the MLE for a fixed n (and fixed locations of the true
points). Comparing (6.35) to (6.34) suggests that for finite sample size n we have

(6.36) Var(Θ̂MLE) = σ2

( n∑
i=1

PΘi P
T
Θi

‖Pxi‖2

)−1

+ o
(
σ2/n

)
,

i.e. the matrix V for the MLE, in the notation of (6.31), is

(6.37) VMLE =

( n∑
i=1

PΘi P
T
Θi

‖Pxi‖2

)−1

.

This formula was indeed proved by Fuller, see Theorem 3.2.1 in [66]; it was
independently derived in [42].

Bias of the MLE. Amemiya and Fuller also computed the asymptotic bias
of the MLE, see (2.11) in [5], which in the above notation is

(6.38) E
(
Θ̂MLE − Θ̃

)
=

σ2
m

2

nm∑
i=1

tr

[
Pxxi

(
I− Pxi P

T
xi

‖Pxi‖2

)]
VMLEPΘi

‖Pxi‖2
+ o(σ2

m).

Here Pxxi is the 2 × 2 matrix of the second order partial derivatives of P with
respect to x and y, taken at the point x̃i. For example, in the case of fitting
circles we have

Pxxi =

[
2 0
0 2

]
.

Note that the main term in (6.38) is, in our notation, of order O(σ2), i.e. it
represents the essential bias. The remainder term o(σ2

m) includes, in our notation,
all the O(σ2/n) and O(σ4) terms, i.e. it contains the non-essential bias. Thus we
can rewrite (6.38) as

(6.39) B1,MLE =
1

2

n∑
i=1

tr

[
Pxxi

(
I− Pxi P

T
xi

‖Pxi‖2

)]
VMLEPΘi

‖Pxi‖2
.
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6.9. Kanatani-Cramer-Rao lower bound

KCR lower bound. The matrix V, representing the leading terms of the
variance, has a natural lower bound (an analogue of the Cramer-Rao bound):
there is a symmetric positive semi-definite matrix Vmin such that for every geo-
metrically consistent estimator

(6.40) V ≥ Vmin,

in the sense that V −Vmin is a positive semi-definite matrix.
In fact, the matrix Vmin coincides with VMLE, cf. (6.37) obtained by Fuller

for the variance of the Maximum Likelihood Estimator, i.e.

(6.41) Vmin = VMLE =

( n∑
i=1

PΘi P
T
Θi

‖Pxi‖2

)−1

,

see the notation of (6.37).

We say that an estimator Θ̂ is asymptotically efficient, as σ → 0, if its co-
variance matrix V satisfies V = Vmin. Obviously, the MLE (the geometric fit) is
asymptotically efficient.

History of the KCR.The inequality (6.40) with the formula (6.41) have an
interesting history. First, an analogue of (6.40) was proved in the mid-1990s by

Kanatani [95, 96] who showed that for any unbiased estimator Θ̂

(6.42) Var(Θ̂) ≥ σ2Vmin.

He also derived an explicit formula (6.41) for the matrix Vmin.
It is important to note that the inequality (6.42) is, in a sense, stronger than

(6.40), because it gives a lower bound on the actual covariance matrix, rather than
its leading term. On the other hand, Kanatani assumed unbiasedness, hence his
bound (6.42), strictly speaking, could not be applied to many practical estimators,

including Θ̂MLE, as they are biased in most cases. (Very likely it cannot be applied
to any existing estimator of nonlinear curve parameters, as virtually all of them
are biased.)

In the early 2000’s Chernov and Lesort [42] realized that Kanatani’s argument
[95] essentially works for biased estimators, provided those are geometrically con-
sistent. As a result, they derived a more general bound (6.40) for all geometrically
consistent estimates (including the MLE). Incidentally, this proves that the MLE
is asymptotically efficient (optimal to the leading order) in the much larger class
of all geometrically consistent estimators.

Furthermore, Chernov and Lesort proved [42] that the gradient-weighted al-
gebraic fit (GRAF), introduced in Section 6.5, is always asymptotically efficient,
i.e. its covariance matrix V attains the lower bound Vmin. In fact, they showed
in [42] that if one uses a general weighted algebraic fit (6.13), then the resulting
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parameter estimates will be asymptotically efficient if and only if the weights wi

are proportional to the gradient weights (6.15), i.e.

V = Vmin ⇐⇒ wi =
c(Θ)

‖∇xP (xi, yi;Θ)‖2
,

where c(Θ) is any function that depends on the parameters only.
In addition, Chernov and Lesort [42] derived (6.40) in the context of not only

the Cartesian model, but also the radial model. Lastly, they named the inequality
(6.40) Kanatani-Cramer-Rao (KCR) lower bound, recognizing the crucial contri-
bution of Kanatani [95, 96].

Assessing the quality of estimators. Our analysis dictates the following
strategy of assessing the quality of an estimator Θ̂: first of all, its accuracy is
characterized by the matrix V, which must be compared to the KCR lower bound
Vmin. We will see that for all the circle fitting algorithms and for many popular
ellipse fitting algorithms the matrix V actually achieves its lower bound Vmin,
i.e. we have V = Vmin, hence the corresponding algorithms are optimal to the
leading order.

Next, once the factor V is already at its natural minimum, the accuracy of
an estimator should be characterized by the vector B1 representing the essential
bias: better estimates should have smaller essential biases. It appears that there
is no natural minimum for ‖B1‖, in fact there exist estimators which have a
minimum variance V = Vmin and a zero essential bias, i.e. B1 = 0. We will
construct them in Section 7.5.

6.10. Bias and inconsistency in the large sample limit

Thus far our analysis was restricted to the small noise asymptotic model, in
which σ → 0 and n was fixed (or assumed to be a moderately large constant); such
a model is perhaps appropriate for most computer vision applications. However
many statisticians investigate curve fitting algorithms in the traditional large
sample limit n → ∞ keeping σ > 0 fixed. We devote the last few sections to
these studies.

Bias. In many nonlinear statistical models, unbiased estimation of unknown
parameters is virtually impossible, thus all practical estimators are biased. We
have seen in Chapter 1 and Chapter 2 that even in the linear EIV model y =
a + bx all known estimators of a and b are actually biased. In nonlinear EIV
regression, the bias is inevitable and much more significant than in the linear
case, see e.g. [28, 79]. The biasedness of curve fitting algorithms has been pointed
independently by many authors, see [17, 18, 31, 94, 189, 198], just to name a
few.
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The origin of the bias is geometrically obvious, see our illustration in Fig-
ure 6.5. Under the standard assumption that the noise is centrally-symmetric, it
is clear that one is more likely to observe points outside the true arc than inside
it. Thus the fitted arc tends to be biased outward.

Figure 6.5. The likelihood of observing a point outside the true
arc is higher than that inside it.

If one fits circles, then clearly the bias is toward larger circles, i.e. the radius
estimate tends to exceed its true value. Werman and Keren [189] empirically
demonstrate that the radius estimate may be as high as 150% of the true radius
value, i.e. one may have E(R̂) = 1.5 R. Such a heavy bias occurs, however, only
if the noise is so large that σ ≈ R.

A detailed analysis involving Taylor expansion [17] shows that

(6.43) E(R̂) = R +
σ2

2R
+O(σ4),

i.e. the ratio bias:radius is approximately 1
2
(σ/R)2. As in most computer vision

applications σ/R stays below 0.05, cf. [17], the bias:radius ratio rarely exceeds
0.001. But still it is something one has to reckon with. The worst part here is
perhaps that the bias does not vanish (or even decrease) when one samples more
data points, i.e. when n grows, see next.

Inconsistency. In classical statistics, an estimator Θ̂n of an unknown pa-
rameter vector Θ, based on n independent observations, is said to be consistent if
Θ̂n → Θ̃ in probability, as n →∞, where Θ̃ denotes the true parameter vector.
One upgrades this notion to strong consistency if the convergence occurs almost
surely, i.e. with probability one.

Motivated by this notion, many authors examined the consistency of curve
fitting algorithms and found that in nonlinear cases they are almost universally
inconsistent. In fact, it was found that Θ̂n converges (both in probability and

almost surely) to some limit Θ∗, which is different from the true parameter Θ̃.
To determine the limit Θ∗ we need to specify how the true points are chosen

on the true curve, in the limit n → ∞. Let P0 denote a probability measure on
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the true curve P (x, y; Θ̃) = 0. If the curve is a circle or an ellipse, then P0 may
be a uniform measure on the entire curve, or a uniform measure on an arc.

Now we can choose n true points randomly according to the measure P0, then
we get a structural model, see Section 6.1. Alternatively, we can set n true points
in some specific way but make sure that their asymptotic distribution converges
to P0. For example, if P0 is a uniform measure on an arc, then the true points can
be positioned equally spaced along that arc, and their distribution will converge
to P0.

Let Pσ denote the probability distribution of an observed point (x, y) =
(x̃, ỹ) + (δ, ε), where (x̃, ỹ) has distribution P0, and δ and ε are normal random
variables with mean zero and variance σ2, independent from each other and from
(x̃, ỹ). In the structural model, the observed points are i.i.d. random variables
with distribution Pσ. (Note that if σ = 0, then Pσ actually coincides with P0.)

Suppose the estimate Θ̂n of the unknown parameter vector Θ is obtained by
minimizing

(6.44) F(Θ) =
n∑

i=1

f 2(xi, yi;Θ),

where f(x, y, ;Θ) is a certain function. The geometric fit uses f(x, y, ;Θ) = {the
distance from the point (x, y) to the curve P (x, y;Θ) = 0}. Algebraic fits use
other functions.

Then we have the following fact:

Theorem 6.2. Under certain regularity conditions, the estimator Θ̂n converges,
in probability and almost surely, to the (assumed unique) value Θ∗ minimizing

(6.45) F∗(Θ) =

∫
f 2(x, y;Θ) dPσ.

Proof of the theorem. This theorem is a straightforward generalization
of the one proved by Berman and Culpin [18] for circular fits. For the sake of
completeness, we sketch its proof here (this subsection can be skipped without
any harm for further reading). Our proof uses elements of measure theory.

Suppose we observe n points (x1, y1), . . ., (xn, yn). Let Pn denote an atomic
measure on the xy plane supported by the observed points, i.e. the measure Pn

is defined by ∫
g(x, y) dPn =

1

n

n∑
i=1

g(xi, yi)

for any continuous function g. In terms of Pn, our estimate Θ̂n is obtained by
minimizing the integral

(6.46)
1

n
F(Θ) =

∫
f 2(x, y;Θ) dPn.
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It follows from the strong law of large numbers that Pn weakly converges to Pσ

almost surely, i.e. with probability one. Thus the arg-minimum of the integral
(6.46) converges to the (assumed unique) arg-minimum of the integral (6.45).

The mild regularity assumptions we need here are the smoothness of the
curve P (x, y;Θ) = 0, the compactness of the support of the measure P0 (which
is automatically ensured for closed curves like circles or ellipses), and a certain
continuity in x, y,Θ of the ‘cost’ function f , we omit details.

Inconsistency of the MLE. In most cases, the limit value Θ∗ specified by
Theorem 6.2 is different from the true parameter vector Θ̃. There are general
mathematical theorems on the inconsistency of nonlinear EIV regression estima-
tors. For example, Fazekas, Kukush, and Zwanzig [59] proved that under mild
regularity and ‘genericity’ conditions, the Maximum Likelihood Estimator (i.e.
the geometric fit) is inconsistent; they also derived approximate formulas for the
limit Θ∗.

6.11. Consistent fit and adjusted least squares

Once statisticians realized that parameter estimators in the curve fitting prob-
lems were almost universally biased, and once they derived various approximative
formulas for the bias, attempts have been made to eliminate the latter. Many
practitioners designed various ‘unbiasing’ schemes and tricks and claimed that
they removed the bias.

One needs to remember, however, that truly unbiased estimation in nonlinear
EIV problems is practically impossible. In fact, every known ‘bias removal’ pro-
cedure only eliminates a part of the bias; for example one can remove the leading
term in an asymptotic expansion for the bias, but higher order terms will persist.
We will describe several such tricks below.

Simple bias reduction. The bias of the radius estimate of the geometric
circle fit is known to be σ2

2R
+ O(σ4), see (6.43). Thus one can construct an

‘unbiased’ estimate by

(6.47) R̂‘unbiased′ = R̂− σ2

2R̂
.

Here we assume, for simplicity, that σ is known. Squaring (6.47) and ignoring
higher order terms gives another version of essentially unbiased radius estimator:

(6.48) R̂2
‘unbiased′ = R̂2 − σ2.

Similar tricks are proposed by various authors, see e.g. [189]. For other tricks,
see [33, 32, 195].

Amemiya and Fuller [5] develop a more sophisticated procedure eliminating
the essential bias of the maximum likelihood estimators, for a general problem of
fitting arbitrary curves to data (again assuming that the noise level σ is known).
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One can check (we omit details) that for circles their procedure reduces to (6.48).

We note that these tricks remove ‘most’ of the bias (i.e. all the terms of
order σ2), but there remain ‘leftover’ terms of higher order, i.e. σ4. They may
be small, but they do not vanish as n → ∞, thus the resulting estimate is not
asymptotically unbiased in the large sample limit. Thus, it is not consistent
either.

Several adjustments have been developed to ensure consistency as n → ∞.
One, designed for linear and polynomial EIV regression, is described below.

Adjusted least squares: linear case. To ensure not only a reduction of
the bias, but an asymptotical unbiasedness and consistency in the large sample
limit, one can make appropriate adjustments in the estimating procedure.

Suppose one fits a straight line y = α + βx to the observed points. The clas-
sical regression estimates (Section 1.1) are obtained by the least squares method
minimizing

F(α, β) = 1
n

∑
(yi − α− βxi)

2,

which reduces to a system of linear equations

α + βx̄ = ȳ

αx̄ + βxx = xy,
(6.49)

where we use our ‘sample mean’ notation x̄ = 1
n

∑
xi, xy = 1

n

∑
xiyi, etc.

Now recall that both x and y are observed with errors, i.e. xi = x̃i + δi and
yi = ỹi + εi. In the limit n →∞, according to the central limit theorem, we have

x̄ = ¯̃x +OP (n−1/2)

ȳ = ¯̃y +OP (n−1/2)

xy = x̃ỹ +OP (n−1/2),

i.e. three random terms in (6.49) converge to their ‘true’ values. But the fourth
one does not, because

xx =
1

n

∑
(x̃i + δi)

2

=
1

n

∑
x̃2

i +
1

n

∑
δ2
i +

2

n

∑
x̃iδi

=
1

n

∑
x̃2

i + σ2 +OP (n−1/2),

where we used the fact E(δ2
i ) = σ2. That extra term σ2 is the origin of inconsis-

tency and asymptotic biasedness. To eliminate it we adjust the system (6.49) as
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follows:
α + βx̄ = ȳ

αx̄ + β(xx− σ2) = xy,
(6.50)

Now every term converges to its true value, in the limit n →∞, thus the solutions
converge to the true parameter values α̃ and β̃. The solutions of (6.50) are called
the adjusted least squares (ALS) estimators.

The adjusted least squares estimators work well in practice, their accuracy
is comparable to that of the MLE described in Chapter 1, see [37, 116]. Inter-
estingly, both the estimators (ALS and MLE) have infinite moments, see [37];
paradoxically, this feature appears to be a ‘certificate of quality’. We note, how-
ever, that the ALS (unlike the MLE) assumes that the noise level σ is known.

Adjusted least squares: polynomial case. The above method generalizes
to polynomials as follows. Suppose one fits a polynomial of degree k,

y = p(x) = β0 + β1x + · · ·+ βkx
k,

to observed points by the classical regression, i.e. by minimizing

F(β0, . . . , βk) = 1
n

∑[
yi − p(xi)

]2
.

This reduces to a standard system of linear equations

(6.51) β0xm + β1xm+1 + · · ·+ βkxm+k = xmy, m = 0, . . . , k

We now compute the limits of the coefficients of these equations, as n → ∞.
According to the central limit theorem, they converge to their mean values, i.e.

xm = E
(
xm

)
+OP (n−1/2), xmy = E

(
xmy

)
+OP (n−1/2).

To ensure the consistency it is enough to make the mean values equal to the
corresponding true values, i.e. we need to replace xm and xmy with some other
statistics, call them Am and Bm, respectively, so that

E
(
Am

)
= x̃m, E

(
Bm

)
= x̃mỹ.

Remark 6.3. Superficially, the problem appears to be about adjusting the mean values,
i.e. correcting for bias. Some authors mistakenly claim that the adjustment produces
unbiased estimates of the unknown parameters. In fact, the resulting estimates are
only asymptotically unbiased (in the limit n →∞); they are also consistent.

We will show how to choose the desired statistics Am and Bm for small values
of m. Obviously, A1 = x̄ and B1 = xy. Then direct calculation gives

E(x2) = x̃2 + σ2, E(x2y) = x̃2ỹ + ¯̃yσ2,

E(x3) = x̃3 + 3¯̃xσ2, E(x3y) = x̃3ỹ + 3x̃ỹσ2,

E(x4) = x̃4 + 6x̃2σ2 + 3σ4, E(x4y) = x̃4ỹ + 6x̃2ỹσ2 + 3¯̃yσ4,
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which suggest that

A2 = x2 − σ2, B2 = x2y − ȳσ2,

A3 = x3 − 3x̄σ2, B3 = x3y − 3xyσ2,

A4 = x4 − 6x2σ2 + 3σ4, B4 = x4y − 6x2yσ2 + 3ȳσ4.

This method can be directly extended to arbitrary Am and Bm, see [30] and
Section 6.4 in [40].

Lastly, the adjusted least squares estimates are the solutions of the system

(6.52) β0Am + β1Am+1 + · · ·+ βkAm+k = Bm, m = 0, . . . , k

Adjustments for implicit nonlinear models. This section covered ex-
plicit functional relations – linear and polynomial models. In most computer
vision applications, though, one fits implicit nonlinear models to data; see Sec-
tion 1.9. Those require more sophisticated approaches, discussed further in Sec-
tion 7.8.





CHAPTER 7

Statistical analysis of circle fits

In this chapter we apply the general methods surveyed and developed in
Chapter 6 to the problem of fitting circles to data.

7.1. Error analysis of geometric circle fit

First we analyze the geometric circle fit, i.e. the estimator Θ̂ = (â, b̂, R̂) of the
circle parameters (the center (a, b) and the radius R) minimizing

∑
d2

i , where di

is the orthogonal (geometric) distance from the data point (xi, yi) to the fitted
circle.

Variance of the geometric circle fit. We start with the main part of our
error analysis: the variance term represented by σ2V in (6.31).

Recall that the distance di is given by

di =
√

(xi − a)2 + (yi − b)2 −R

=

√[
(x̃i − ã) + (δi −∆a)

]2
+

[
(ỹi − b̃) + (εi −∆b)

]2 − R̃−∆R,(7.1)

cf. (3.3). Here ã, b̃, R̃ are the parameters of the true circle. For brevity we denote

ũi = (x̃i − ã)/R̃ and ṽi = (ỹi − b̃)/R̃,

in fact these are the ‘true’ values of ui and vi introduced earlier in (4.20)–(4.21).
Note that ũ2

i + ṽ2
i = 1 for every i.

Now, to the first order, we have

di =

√
R̃2 + 2R̃ũi(δi −∆a) + 2R̃ṽi(εi −∆b) +OP (σ2)− R̃−∆R

= ũi(δi −∆a) + ṽi(εi −∆b)−∆R +OP (σ2).(7.2)

Minimizing
∑

d2
i to the first order is equivalent to minimizing

n∑
i=1

(ũi ∆a + ṽi ∆b + ∆R− ũiδi − ṽiεi)
2.

This is a classical least squares problem that can be written as

(7.3) W ∆Θ ≈ Ũδ + Ṽε,

173
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where

(7.4) W =

 ũ1 ṽ1 1
...

...
...

ũn ṽn 1

 ,

Θ = (a, b, R)T , and

δ = (δ1, . . . , δn)T and ε = (ε1, . . . , εn)T

and
Ũ = diag(ũ1, . . . , ũn) and Ṽ = diag(ṽ1, . . . , ṽn).

The solution of the least squares problem (7.3) is

(7.5) ∆Θ̂ = (WTW)−1WT (Ũδ + Ṽε),

of course this does not include the OP (σ2) terms.
Thus the variance of our estimator, to the leading order, is

E
[
(∆Θ̂)(∆Θ̂)T

]
= (WTW)−1WT E

[
(Ũδ + Ṽε)(δT Ũ + εT Ṽ)

]
W(WTW)−1.

Now observe that
E(δεT ) = E(εδT ) = 0

as well as
E(δδT ) = E(εεT ) = σ2I,

and next we have Ũ2 + Ṽ2 = I, thus to the leading order

E
[
(∆Θ̂)(∆Θ̂)T

]
= σ2(WTW)−1WTW(WTW)−1

= σ2(WTW)−1,(7.6)

where the higher order (of σ4) terms are not included. The expression (7.6) is
known to the statistics community. First, it is a particular case of a more general
formula (6.37), which is given in Theorem 3.2.1 of Fuller’s book [66]. Second,
(7.6) was explicitly derived by Kanatani [96] and others [42] by using less direct
approaches.

Bias of the geometric circle fit. Now we do a second-order error analysis,
which has not been previously done in the statistics literature. According to a
general formula (6.18), we put

a = ã + ∆1a + ∆2a +OP (σ3),

b = b̃ + ∆1b + ∆2b +OP (σ3),

R = R̃ + ∆1R + ∆2R +OP (σ3).

Here ∆1a, ∆1b, ∆1R are linear combinations of εi’s and δi’s, which were found
above, in (7.5); and ∆2a, ∆2b, ∆2R are quadratic forms of εi’s and δi’s to be
determined next.
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Expanding the distances di to the second order terms gives

di = ũi(δi −∆1a) + ṽi(εi −∆1b)−∆1R

− ũi ∆2a− ṽi ∆2b−∆2R

+
ṽ2

i

2R̃
(δi −∆1a)2 +

ũ2
i

2R̃
(εi −∆1b)

2

− ũiṽi

R̃
(δi −∆1a)(εi −∆1b).

Since we already found ∆1a, ∆1b, ∆1R, the only unknowns are ∆2a, ∆2b, ∆2R.
Minimizing

∑
d2

i is now equivalent to minimizing

n∑
i=1

(ũi ∆2a + ṽi ∆2b + ∆2R− fi)
2,

where

fi = ũi(δi −∆1a) + ṽi(εi −∆1b)−∆1R

+
ṽ2

i

2R
(δi −∆1a)2 +

ũ2
i

2R
(εi −∆1b)

2

− ũiṽi

R
(δi −∆1a)(εi −∆1b).(7.7)

This is another classical least squares problem, and its solution is

(7.8) ∆2Θ̂ = (WTW)−1WTF,

where F = (f1, . . . , fn)T ; of course this is a quadratic approximation which does
not include OP (σ3) terms. In fact, the contribution from the first three (linear)
terms in (7.7) vanishes, quite predictably; thus only the last two (quadratic)
terms will matter.

Taking the mean value gives, to the leading order,

(7.9) E(∆Θ̂) = E(∆2Θ̂) =
σ2

2R

[
(WTW)−1WT1 + (WTW)−1WTS

]
,

where 1 = (1, 1, . . . , 1)T and S = (s1, . . . , sn)T , here si is a scalar given by

si = [−ṽi, ũi, 0](WTW)−1[−ṽi, ũi, 0]T .

The second term in (7.9) is of order O(σ2/n), thus the essential bias is given
by the first term only:

E(∆Θ̂)
ess
=

σ2

2R
(WTW)−1WT1.

In fact, this expression can be simplified. Since the last column of the matrix
WTW coincides with the vector WT1, we have (WTW)−1WT1 = [0, 0, 1]T ;
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hence the essential bias of the geometric circle fit is

(7.10) E(∆Θ̂)
ess
=

σ2

2R

 0
0
1

 .

The same result can also be obtained from the general formula (6.39). Thus the

estimates of the circle center, â and b̂, have no essential bias, while the estimate
of the radius has essential bias

(7.11) E(∆R̂)
ess
=

σ2

2R
,

which is independent of the number and location of the true points.

7.2. Cramer-Rao lower bound for the circle fit

Here we derive the classical lower bound on the covariance matrix of the circle
parameter estimators. This is a fairly standard task, we just follow the lines of
Section 2.8. A similar analysis was recently included in a paper by Zelniker and
Clarkson [196].

We work in the context of the Cartesian functional model, in which there
are n + 3 independent parameters: three principal ones (a, b, R) and one ‘latent’
parameter for each data point.

First we specify the coordinates of the true points by

x̃i = ã + R̃ cos ϕi, ỹi = ã + R̃ sin ϕi

where ϕ1, . . . , ϕn are the latent parameters (recall that we have used this formal-
ism in Section 4.8). Now, under our standard assumptions (Cartesian functional
model described in Section 6.1), the log-likelihood function is

(7.12) ln L = const− 1

2σ2

n∑
i=1

(xi − x̃i)
2 + (yi − ỹi)

2.

According to the classical Cramer-Rao theorem, the covariance matrix of unbiased
parameter estimators is bounded below by

Cov(â, b̂, R̂, ϕ̂1, . . . , ϕ̂n) ≥ F−1,

where F is the Fisher information matrix, F = −E(H), and H denotes the Hessian
matrix consisting of the second order partial derivatives of ln L with respect to
the parameters.

Computing the second order partial derivatives of (7.12) with respect to a,
b, C, and ϕ1, . . ., ϕn is a routine exercise which we omit. Taking their expected
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values (and using the obvious relations E(xi) = x̃i and E(yi) = ỹi) gives the
following results (where we suppress the common factor σ−2 for brevity)

E
[∂2 ln L

∂a2

]
= −n, E

[∂2 ln L

∂b2

]
= −n, E

[∂2 ln L

∂R2

]
= −n,

E
[∂2 ln L

∂a ∂R

]
= −

∑
cos ϕi, E

[∂2 ln L

∂a ∂b

]
= 0, E

[∂2 ln L

∂b ∂R

]
= −

∑
sin ϕi,

E
[∂2 ln L

∂a ∂ϕi

]
= R sin ϕi, E

[∂2 ln L

∂b ∂ϕi

]
= −R cos ϕi, E

[ ∂2 ln L

∂R ∂ϕi

]
= 0,

and lastly

E
[ ∂2 ln L

∂ϕi ∂ϕj

]
= −R2δij,

where δij denotes the Kronecker delta symbol. The Fisher information matrix
now can be written as

F = σ−2

[
K LT

L R2In

]
,

where

K =

 n 0
∑

cos ϕi

0 n
∑

sin ϕi∑
cos ϕi

∑
sin ϕi n


and

L =

 −R sin ϕ1 R cos ϕ1 0
...

...
...

−R sin ϕn R cos ϕn 0

 .

As usual, In denotes the identity matrix of order n. Next we apply a standard
block matrix inversion lemma (see, e.g. page 26 of [128]) we obtain[

K LT

L R2In

]−1

=

[
(K−R−2LTL)−1 −(R2K− LTL)−1LT

−L(R2K− LTL)−1 (R2In − LK−1LT )−1

]
.

One can easily verify this formula by direct multiplication. The 3 × 3 top left
block of the last matrix is the most interesting to us as it corresponds to the
principal parameters a, b, R. In terms of the matrix W introduced earlier in (7.4)
we have ũi = cos ϕi and ṽi = sin ϕi, hence

K−R−2LTL = WTW,

thus the Cramer-Rao bound reads

(7.13) E
[
(∆Θ̂)(∆Θ̂)T

]
≥ σ2(WTW)−1.

This result is known to the statistics community, though it is not clear who was
the first to derive it. It was apparently known to Chan in 1965, see page 53 of
[31], though he did not state it explicitly. In an explicit form, it was published
by Chan and Thomas [35] in 1995, but their argument was somewhat flawed. A
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correct argument was given in 1998 by Kanatani [96] and, independently, in 2006
by Zelniker and Clarkson [196].

The unbiasedness restriction. A few comments are in order regarding the
practical relevance of the above result. The Cramer-Rao theorem only establishes
the minimal variance for unbiased estimators. In the case of fitting nonlinear
curves to data, there is no such luxury as unbiased estimators; in particular
all circle fitting algorithms are biased to some extent (sometimes heavily); see
Section 6.10. Hence it is not immediately clear if the bound (7.13) has any
practical value, i.e. if it applies to any circle fit.

It actually does, as we explained in Section 6.9, if one restricts the analysis
to the leading terms (of order σ2). The right hand side of (7.13) gives the lower
bound for the leading term of the covariance matrix, i.e.

(7.14) V ≥ (WTW)−1.

This is true for any geometrically consistent circle fit, i.e. any fit satisfying (6.19).
Thus (7.14) holds for the geometric circle fit and all known algebraic circle fits.

Summary. Comparing (7.6) and (7.14) shows that the geometric circle fit
has a minimal possible variance, to the leading order. A similar fact for algebraic
circle fits will be established shortly; then we will see that all the known circle
fits have minimal possible variance V, which is Vmin = (WTW)−1.

On the other hand, the essential bias of the geometric circle fit does not
vanish, it is given by (7.9). A natural question is then: does the essential bias
(7.9) also attain its natural minimum, or can it be reduced? We will see in the
next sections that the essential bias can be reduced, and in fact eliminated.

7.3. Error analysis of algebraic circle fits

Here we analyze algebraic circle fits described in Chapter 5, including the
K̊asa fit, the Pratt fit, and the Taubin fit.

Review of algebraic circle fits (Section 5.11). Let us again describe
circles by an algebraic equation

(7.15) A(x2 + y2) + Bx + Cy + D = 0,

where A = (A, B, C,D)T is the 4-parameter vector. Recall that every algebraic
fit is equivalent to the minimization of

F(A, B, C,D) =
1

n

n∑
i=1

(Azi + Bxi + Cyi + D)2

= n−1AT (XTX)A = ATMA,(7.16)

subject to a constraint

(7.17) ATNA = 1
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for some matrix N. Here we use our shorthand notation zi = x2
i + y2

i and

M =
1

n
XTX =


zz zx zy z̄
zx xx xy x̄
zy xy yy ȳ
z̄ x̄ ȳ 1

 ,

where

(7.18) X =

 z1 x1 y1 1
...

...
...

...
zn xn yn 1

 .

The constraint matrix N in (7.17) determines the particular algebraic fit. It is

(7.19) N = K =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


for the K̊asa fit, cf. (5.39),

(7.20) N = P =


0 0 0 −2
0 1 0 0
0 0 1 0

−2 0 0 0


for the Pratt fit, see (5.27), and

(7.21) N = T =


4z̄ 2x̄ 2ȳ 0
2x̄ 1 0 0
2ȳ 0 1 0
0 0 0 0

 ,

for the Taubin fit, see (5.48); here we again use our standard ‘sample mean’
notation z̄ = 1

n

∑
zi, etc.

The constrained minimization problem (7.16)–(7.17) reduces to the general-
ized eigenvalue problem

(7.22) MA = ηNA,

thus A must be a generalized eigenvector of the matrix pair (M,N). To find the
solution of the minimization problem (7.16)–(7.17) we must choose the eigenvec-
tor A with the smallest non-negative eigenvalue η. This fact determines A up
to a scalar multiple; as multiplying A by a scalar does not change the circle it
represents, we can set ‖A‖ = 1.
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Matrix perturbation method. As algebraic fits can be conveniently ex-
pressed in matrix form, we perform error analysis on matrices, following Kanatani
[104]. For every random variable, matrix or vector, Z, we write

(7.23) Z = Z̃ + ∆1Z + ∆2Z +OP (σ3),

where Z̃ is its ‘true’, nonrandom, value (achieved when σ = 0), ∆1Z is a linear
combination of δi’s and εi’s, and ∆2Z is a quadratic form of δi’s and εi’s; all the
higher order terms (cubic etc.) are represented by OP (σ3). For brevity, we drop
the OP (σ3) terms in the subsequent formulas.

Also note that M̃Ã = 0, as well as X̃Ã = 0, because the true points lie on
the true circle. This implies

ÃT ∆1MÃ = n−1ÃT
(
X̃T ∆1X + ∆1X

T X̃
)
Ã = 0,

hence ATMA = OP (σ2), and premultiplying (7.22) by AT yields η = OP (σ2).
Next we expand (7.22) to the second order terms, according to the general

rule (7.23), and omitting terms OP (σ3) gives

(7.24) (M̃ + ∆1M + ∆2M)(Ã + ∆1A + ∆2A) = ηÑÃ

(recall that for the Taubin method N is data-dependent, but only its ‘true’ value

Ñ matters, because η = OP (σ2)).

The left hand side of (7.24) consists of a linear part (M̃∆1A+∆1AM̃) and a

quadratic part (M̃∆2A+∆1M∆1A+∆2MÃ). The right hand side is quadratic.
Separating linear and quadratic terms gives

(7.25) M̃∆1A + n−1X̃T ∆1XÃ = 0

and, again omitting terms OP (σ3),

(7.26) M̃∆2A + ∆1M∆1A + ∆2MÃ = ηÑÃ.

Note that M̃ is a singular matrix (because M̃Ã = 0), but whenever there are
at least three distinct true points, they determine a unique true circle, thus the
kernel of M̃ is one-dimensional, and it coincides with the one-dimensional vector
space span(Ã). Also, since we set ‖A‖ = 1, we see that ∆1A is orthogonal to Ã,
hence we can write

(7.27) ∆1A = −n−1M̃−X̃T ∆1XÃ,

where M̃− denotes the Moore-Penrose pseudoinverse. Note that E(∆1A) = 0.

7.4. Variance and bias of algebraic circle fits

Here we use our previous error analysis to derive explicit formulas for the
variance and bias of the algebraic circle fits in the parameters A, B, C, D. The
natural geometric parameters a, b, R will be treated in Section 7.6.
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Variance of algebraic circle fits. The variance, to the leading order, is

E
[
(∆1A)(∆1A)T

]
= n−2M̃−E(X̃T ∆1XÃÃT ∆1X

T X̃)M̃−

= n−2M̃−E
[(∑

i

X̃i ∆1X
T
i

)
ÃÃT

(∑
j

∆1X
T
j X̃T

j

)]
M̃−,(7.28)

where

X̃i =


z̃i

x̃i

ỹi

1

 and ∆1Xi =


2x̃iδi + 2ỹiεi

δi

εi

0


denote the columns of the matrices X̃T and ∆1X

T , respectively. Observe that

E
[
(∆1Xi)(∆1Xj)

T
]

=

{
0 whenever i 6= j

σ2T̃i whenever i = j

where

T̃i =


4z̃i 2x̃i 2ỹi 0
2x̃i 1 0 0
2ỹi 0 1 0
0 0 0 0

 .

Now we rewrite (7.28) as

E
[
(∆1A)(∆1A)T

]
= n−2M̃−

[∑
i,j

X̃iÃ
T E

(
∆1Xi∆1X

T
j

)
ÃX̃T

j

]
M̃−

= n−2σ2M̃−
[∑

i

X̃iÃ
T T̃iÃX̃T

i

]
M̃−

Note that

ÃT T̃iÃ = ÃTPÃ = B̃2 + C̃2 − 4ÃD̃

for each i, hence∑
i

X̃iÃ
T T̃iÃX̃T

i =
∑

i

(ÃTPÃ)X̃iX̃
T
i = n(ÃTPÃ)M̃.

This gives

(7.29) E
[
(∆1A)(∆1A)T

]
= n−1σ2M̃−(ÃTPÃ).

Remarkably, the variance of algebraic fits does not depend on the constraint
matrix N, hence all algebraic fits have the same variance (to the leading order).
In Section 7.6 we will derive the variance of algebraic fits in the natural circle
parameters (a, b, R) and see that it coincides with the variance of the geometric
fit (7.6).
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Bias of algebraic circle fits. Since E(∆1A) = 0, it will be enough to find
E(∆2A), and this will be done via (7.26). First we can write, following (7.23)

η = η̃ + ∆1η + ∆2η +OP (σ3).

Premultiplying (7.22) by ÃT yields

η =
ÃTMA

ÃTNA
=

ÃT ∆2MÃ + ÃT ∆1M∆1A

ÃT ÑÃ
+OP (σ3),

in particular we see that η̃ = ∆1η = 0 and η = OP (σ2). Thus by (7.26)

(7.30) ∆2A = M̃−
(

ÃTL

ÃÑÃ
ÑÃ− L

)
+OP (σ3),

where

(7.31) L = ∆2MÃ + ∆1M∆1A.

We note that (7.30) actually gives the component of ∆2A orthogonal to A, but
it is exactly what we need, because ‖A‖ = 1. We can rewrite (7.31) as

L = RÃ

where, according to (7.27),

R = 1
n

[
∆1X

T ∆1X + X̃T ∆2X + ∆2X
T X̃

− 1
n

(
X̃T ∆1X + ∆1X

T X̃
)
M̃− X̃T ∆1X

]
.(7.32)

Thus the formula for the bias becomes

(7.33) E(∆2A) = M̃−
[
ÃT E(R)Ã

ÃT ÑÃ
ÑÃ− E(R)Ã

]
+O

(
σ4

)
.

Next we find the mean value of (7.32), term by term. First,

(7.34) 1
n

E(∆1X
T ∆1X) = 1

n
E

(∑
i

(∆1Xi)(∆1Xi)
T
)

= σ2

n

∑
i

T̃i = σ2T̃.

Second, since E(∆2Xi) = (2σ2, 0, 0, 0)T , we obtain

(7.35) 1
n

E(X̃T ∆2X + ∆2X
T X̃) =

2σ2

n

∑
i


2z̃i x̃i ỹi 1
x̃i 0 0 0
ỹi 0 0 0
1 0 0 0

 = σ2(T̃−P).

The above two terms combined constitute the essential bias, i.e.

(7.36) E(∆2A)
ess
= σ2M̃−

[
ÃT (2T̃−P)Ã

ÃT ÑÃ
ÑÃ− (2T̃−P)Ã

]
.
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The entire O(σ2) bias. We continue computing the mean value of (7.32):

E(X̃T ∆1XM̃− X̃T ∆1X) =
∑

i

E(X̃i ∆1X
T
i M̃− X̃i ∆1X

T
i )

=
∑

i

E(X̃i X̃
T
i M̃− ∆1Xi ∆1X

T
i )

= σ2
∑

i

X̃i X̃
T
i M̃− T̃i.(7.37)

Similarly, we have

(7.38) E(∆1X
T X̃ M̃− X̃T ∆1X) = σ2

∑
i

X̃T
i M̃− X̃i T̃i.

Thus the entire bias is given by

(7.39) E(∆2A) = σ2M̃−
[
ÃT H̃∗Ã

ÃT ÑÃ
ÑÃ− H̃∗Ã

]
+O(σ4),

where

(7.40) H∗ = 2T−P− 1
n2

∑
i

[
Xi X

T
i M−Ti + Ti M

−Xi X
T
i + XT

i M−Xi Ti

]
.

We added the term Ti M
−Xi X

T
i for the sole purpose of keeping H∗ a symmetric

matrix; its symmetry will be essential in the future. The added term does not
affect (7.39), because X̃T

i Ã = 0 for every i = 1, . . . , n.

A simpler formula for the essential bias. Next we simplify the formula
(7.36) for the essential bias. Note that

T̃iÃ = PÃ + 2Ã X̃i

for every i = 1, . . . , n, hence

T̃Ã = PÃ + 2Ãn−1
∑

i

X̃i

and therefore ÃT T̃Ã = ÃTPÃ. We also have

(2T̃−P)Ã = PÃ + 4Ãn−1
∑

i

X̃i.

Also note that the vector n−1
∑

i X̃i coincides with the last column of the matrix

M̃, hence

n−1M̃−
∑

i

X̃i = [0, 0, 0, 1]T .

Summarizing the above facts we reduce (7.36) to

(7.41) E(∆2A)
ess
= σ2M̃−

[
ÃTPÃ

ÃT ÑÃ
ÑÃ−PÃ

]
− 4σ2Ã [0, 0, 0, 1]T .
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7.5. Comparison of algebraic circle fits

Bias of the Pratt and Taubin fits. We have seen that all the algebraic
fits have the same asymptotic variance (7.29). We will see below that their
asymptotic variance coincides with that of the geometric circle fit. Thus the
difference between all our circle fits should be traced to the higher order terms,
especially to their essential biases.

First we compare the Pratt and Taubin fits. For the Pratt fit, the constraint
matrix is N = Ñ = P, hence its essential bias (7.36) becomes

(7.42) E(∆2APratt)
ess
= −4σ2Ã [0, 0, 0, 1]T .

In other words, the Pratt constraint N = P cancels the first term in (7.41); it
leaves the second term intact.

For the Taubin fit, the constraint matrix is N = T and its ‘true’ value is
Ñ = T̃ = 1

n

∑
T̃i. Hence the Taubin’s bias is

(7.43) E(∆2ATaubin)
ess
= −2σ2Ã [0, 0, 0, 1]T .

Thus, the Taubin constraint N = T cancels the first term in (7.41) and a half of
the second term; it leaves only a half of the second term in place.

As a result, the Taubin fit’s essential bias is twice as small as that of the Pratt
fit. Given that their main terms (variances) are equal, we see that the Taubin
fit is statistically more accurate than that of Pratt; this difference might explain
a slightly better performance of the Taubin fit, compared to Pratt, observed in
our experiments in Chapter 5.

In his original paper [176] in 1991, Taubin expressed the intention to compare
his method to that of Pratt, but no such comparison was published. We believe
our analysis presents such a comparison.

Eliminating the essential bias. Interestingly, one can design an algebraic
fit that has no essential bias at all. Let us set the constraint matrix to

(7.44) N = H = 2T−P =


8z̄ 4x̄ 4ȳ 2
4x̄ 1 0 0
4ȳ 0 1 0
2 0 0 0

 .

Then one can see that all the terms in (7.36) cancel out! The resulting essential
bias vanishes:

(7.45) E(∆2AHyper)
ess
= 0.

We call this fit hyperaccurate, or ‘Hyper’ for short. The term hyperaccuracy
was introduced by Kanatani [102, 103, 104] who was first to employ Taylor
expansion up to the terms of order σ4 for the purpose of comparing various
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algebraic fits and designing better fits (he treated more general quadratic models
than circles).

The Hyper fit for circles is proposed in [4].
We note that the matrix H is not singular, three of its eigenvalues are positive

and one is negative (these facts can be easily derived from the following simple
observations: detH = −4, traceH = 8z̄ + 2 > 1, and λ = 1 is one of its
eigenvalues). If M is positive definite, then by Sylvester’s law of inertia the
matrix H−1M has the same signature as H does, i.e. the eigenvalues η of H−1M
are all real, exactly three of them are positive and one is negative. In this sense
the Hyper fit is similar to the Pratt fit, as the constraint matrix P also has three
positive and one negative eigenvalues.

Invariance of the Hyper fit. We note that the Hyper fit is invariant under
translations and rotations. This follows from the fact that the constraint matrix
H is a linear combination of two others, T and P, that satisfy the invariance
requirements, as established in Sections 5.7 and 5.10.

The Hyper fit is also invariant under similarities, which can be verified as
in Section 5.10. Indeed, whenever (x, y) 7→ (cx, cy), we have (A, B, C,D) 7→
(A/c2, B/c, C/c,D), and hence ATHA 7→ c−2ATHA. Thus the constraint ATHA =
1 will be transformed into ATHA = c2, which is irrelevant as our parameter vec-
tor A only needs to be determined up to a scalar multiple.

Hyper fit versus Pratt fit. Curiously, the Hyper fit and the Pratt fit return
the same center of the circle1. This can be seen as follows. Recall that the Pratt
fit is mathematically equivalent to the Chernov-Ososkov fit, and both minimize
the objective function (5.16), which is

FPratt(a, b, R) =

∑n
i=1

[
(xi − a)2 + (yi − b)2 −R2

]2

4R2
.

Now expressing the Hyper fit in the geometric parameters (a, b, R) we can see
that it minimizes the function

FHyper(a, b, R) =

∑n
i=1

[
(xi − a)2 + (yi − b)2 −R2

]2

4n−1
∑n

i=1

[
2(xi − a)2 + 2(yi − b)2 −R2

] .

One can differentiate both functions with respect to R2 and solve the equations

∂FPratt/∂R2 = 0 and ∂FHyper/∂R2 = 0,

thus eliminating R2. Then we arrive at an objective function in terms of a and
b, and it happens to be the same for both Pratt and Hyper fits:

F(a, b) =

(
1

n

n∑
i=1

[
(xi − a)2 + (yi − b)2

]2
) 1

2

− 1

n

n∑
i=1

[
(xi − a)2 + (yi − b)2

]
,

1This interesting fact was discovered by A. Al-Sharadqah.
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up to irrelevant constant factors. Then its minimum gives the estimates of a and
b, and it is the same for both fits. (The Taubin fit give a different estimate of the
center.)

Since the Hyper fit returns the same circle center (â, b̂) as the Pratt fit does,

the Hyper fit estimates (â, b̂, R̂) also have infinite moments (Section 6.4).

SVD-based Hyper fit. A numerically stable implementation of the Hyper
fit is very similar to the SVD-based Pratt fit developed in Section 5.5. First, one
computes the (short) SVD, X = UΣVT , of the matrix X. If its smallest singular
value, σ4, is less than a predefined tolerance ε (say, ε = 10−12), then the solution
A is simply the corresponding right singular vector (i.e. the fourth column of
the V matrix). In the regular case (σ4 ≥ ε), one forms Y = VΣVT and finds
the eigenpairs of the symmetric matrix YH−1Y. Selecting the eigenpair (η,A∗)
with the smallest positive eigenvalue and computing A = Y−1A∗ completes the
solution. The corresponding MATLAB code is available from [84].

An improved Hyper fit. Rangarajan and Kanatani [152] note that one can
eliminate the entire O(σ2) bias by adopting the constraint matrix N = H∗ given
by (7.40); this fact is clear from (7.39). The matrix H∗ is computationally more
complex than our H (it requires finding the pseudo-inverse of M), but numerical
experiments [152] show that the accuracy of the resulting fit is higher than that
of our Hyper fit for small n (such as n = 10 or n = 20); for larger n’s there is
apparently no difference in accuracy.

7.6. Algebraic circle fits in natural parameters

Our next goal is to express the covariance and the essential bias of algebraic
circle fits in terms of the more natural geometric parameters (a, b, R).

Transition between parameter schemes. The conversion formulas be-
tween the algebraic circle parameters (A, B, C,D) and its geometric characteris-
tics (a, b, R), see (3.11), are

(7.46) a = − B

2A
, b = − C

2A
, R2 =

B2 + C2 − 4AD

4A2
.

Taking partial derivatives gives a 3× 4 ‘Jacobian’ matrix

J =

 B
2A2 − 1

2A
0 0

C
2A2 0 − 1

2A
0

−R
A
− D

2A2R
B

4A2R
C

4A2R
− 1

2AR

 .

Thus we have

(7.47) ∆1Θ = J̃∆1A and ∆2Θ = J̃∆2A +OP (σ2/n),
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where J̃ denotes the matrix J at the true parameters (Ã, B̃, C̃, D̃). The remainder
term OP (σ2/n) comes from the second order partial derivatives of (a, b, R) with
respect to (A, B, C,D). For example

(7.48) ∆2a = (∇a)T (∆2A) + 1
2
(∆1A)T (∇2a)(∆1A),

where ∇2a is the Hessian matrix of the second order partial derivatives of a with
respect to (A, B, C,D). The last term in (7.48) can be actually discarded, as it
is of order OP (σ2/n) because ∆1A = OP (σ/

√
n). We collect all such terms in

the remainder term OP (σ2/n) in (7.47).

An auxiliary formula. Next we need a useful fact. Suppose a point (x0, y0)

lies on the true circle (ã, b̃, R̃), i.e.

(x0 − ã)2 + (y0 − b̃)2 = R̃2.

In accordance with our early notation we denote z0 = x2
0+y2

0 and X0 = (z0, x0, y0, 1)T .

We also put u0 = (x0 − ã)/R̃ and v0 = (y0 − b̃)/R̃, and consider the vector
Y0 = (u0, v0, 1)T . The following formula will be useful:

(7.49) 2ÃR̃J̃M̃−X0 = −n(WTW)−1Y0,

where the matrix (WTW)−1 appears in (7.9) and the matrix M̃− appears in

(7.29). The identity (7.49) is easy to verify directly for the unit circle ã = b̃ = 0
and R̃ = 1, and then one can check that it remains valid under translations and
similarities.

Equation (7.49) implies that for every true point (x̃i, ỹi)

4Ã2R̃2J̃M̃−X̃iX̃
T
i M̃−J̃T = n2(WTW)−1YiY

T
i (WTW)−1,

where Yi = (ũi, ṽi, 1)T denote the columns of the matrix W, cf. (7.4). Summing
up over i gives

(7.50) 4Ã2R̃2J̃M̃−J̃T = n(WTW)−1.

Variance and bias of algebraic circle fits in the natural parameters.
Now we can compute the variance (to the leading order) of the algebraic fits in
the natural geometric parameters:

E
[
(∆1Θ)(∆1Θ)T

]
= E

[
J̃(∆1A)(∆1A)T J̃T

]
= n−1σ2(ÃTPÃ)J̃M̃−J̃T .

Using (7.50) and noting that

ÃTPÃ = B̃2 + C̃2 − 4ÃD̃ = 4Ã2R̃2,

due to the third relation in (7.46), gives

(7.51) E
[
(∆1Θ)(∆1Θ)T

]
= σ2(WTW)−1.
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Thus the asymptotic variance of all the algebraic circle fits coincides with that of
the geometric circle fit, cf. (7.6). Therefore all the circle fits achieve the minimal
possible variance, to the leading order; the difference between them should be
then characterized in terms of their biases, to which we turn next.

The essential bias of the Pratt fit is, due to (7.42),

(7.52) E(∆2Θ̂Pratt)
ess
=

2σ2

R̃

 0
0
1

 .

Observe that the estimates of the circle center are essentially unbiased, and the
essential bias of the radius estimate is 2σ2/R̃, which is independent of the number
and location of the true points. We know (Section 7.5) that the essential bias of
the Taubin fit is twice as small, hence

(7.53) E(∆2Θ̂Taubin)
ess
=

σ2

R̃

 0
0
1

 ,

Comparing to (7.10) shows that the geometric fit has an essential bias that is
twice as small as that of Taubin and four times smaller than that of Pratt.

Therefore, the geometric fit has the smallest bias among all the popular circle
fits, i.e. it is statistically most accurate. We observed that fact experimentally in
Chapter 5.

Bias of the K̊asa fit. The formulas for the bias of the K̊asa fit can be
derived, too, but in general they are complicated. However recall that all our
fits, including K̊asa, are independent of the choice of the coordinate system,
hence we can choose it so that the true circle has center at (0, 0) and radius

R̃ = 1; this will simplify the formulas. For this circle Ã = 1√
2
[1, 0, 0,−1]T , hence

PÃ = 2Ã and so M̃−PÃ = 0, i.e. the middle term in (7.36) is gone. Also note

that ÃTPÃ = 2, hence the last term in parentheses in (7.36) is 2
√

2 [1, 0, 0, 0]T .
Then observe that z̃i = 1 for every true point, thus

M =


1 x̄ ȳ 1
x̄ xx xy x̄
ȳ xy yy ȳ
1 x̄ ȳ 1

 .

Next, assume for simplicity that the true points are equally spaced on an arc of
size θ (which is a typical arrangement in many studies). Choosing the coordinate
system so that the east pole (1, 0) of the circle is at the center of that arc ensures
ȳ = xy = 0. It is not hard to see now that

M̃−[1, 0, 0, 0]T = 1
4
(xx− x̄2)−1[xx,−2x̄, 0, xx]T .
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total MSE = variance + (ess. bias)2 + rest of MSE

Pratt 5.6301 5.3541 0.2500 0.0260

Taubin 5.4945 5.3541 0.0625 0.0779

Geom. 5.4540 5.3541 0.0156 0.0843

Hyper. 5.4555 5.3541 0.0000 0.1014

Table 7.1. Mean squared error (and its components) for four cir-
cle fits (104×values are shown). In this test n = 20 points are
placed (equally spaced) along a semicircle of radius R = 1 and the
noise level is σ = 0.05.

Using the formula (7.47) we obtain (omitting details as they are not so relevant)
the essential bias of the K̊asa fit in the natural parameters (a, b, R):

E(∆2Θ̂Kasa)
ess
= 2σ2

 0
0
1

 − σ2

xx− x̄2

 −x̄
0
xx

 .

The first term here is the same as in (7.52) (recall that R̃ = 1), but it is the second
term above that causes serious trouble: it grows to infinity because xx− x̄2 → 0
as θ → 0. This explains why the K̊asa fit develops a heavy bias toward smaller
circles when data points are sampled from a small arc (this phenomenon was
discussed at length in Chapter 5). We will not dwell on the K̊asa fit anymore.

Some more experimental tests. To illustrate our analysis of various circle
fits we have run two experiments. In the first one we set n = 20 true points
equally spaced along a semicircle of radius R = 1. Then we generated random
samples by adding a Gaussian noise at level σ = 0.05 to each true point. In the
second experiment, we changed n = 20 to n = 100.

Table 7.1 summarizes the results of the first test, with n = 20 points; it
shows the mean squared error (MSE) of the radius estimate R̂ for each circle
fit (obtained by averaging over 107 randomly generated samples). The table
also gives the breakdown of the MSE into three components. The first two are
the variance (to the leading order) and the square of the essential bias, both
computed according to our theoretical formulas. These two components do not
account for the entire mean squared error, due to higher order terms which our
analysis discarded. The remaining part of the MSE is shown in the last column,
it is relatively small.

We see that all the circle fits have the same (leading) variance, which accounts
for the ‘bulk’ of the MSE. Their essential bias is different, it is highest for the
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total MSE = variance + (ess. bias)2 + rest of MSE

Pratt 1.5164 1.2647 0.2500 0.0017

Taubin 1.3451 1.2647 0.0625 0.0117

Geom. 1.2952 1.2647 0.0156 0.0149

Hyper. 1.2892 1.2647 0.0000 0.0244

Table 7.2. Mean squared error (and its components) for four cir-
cle fits (104×values are shown). In this test n = 100 points are
placed (equally spaced) along a semicircle of radius R = 1 and the
noise level is σ = 0.05.

Pratt fit and smallest (zero) for the Hyper fit. Algorithms with smaller essential
biases perform overall better, i.e. have smaller mean squared error. However note
that the geometric fit is still slightly more accurate than the Hyper fit, despite its
larger essential bias; this happens due to the contribution from the higher order
terms, O(σ4/n) and O(σ6), which are not controlled by our analysis.

To suppress the contribution from terms O(σ4/n) we increased the number
of points to n = 100, and ran another test whose results are shown in Table 7.2.
We see a similar picture here, but now the Hyper fit outperforms the (usually
unbeatable) geometric fit. We see that the Hyper fit becomes the most accurate
of all our circle fits when the number of points grows.

Overall, however, the geometric fit is the best for smaller samples (n < 100)
and remains nearly equal to the Hyper fit for larger samples. Our experimental
observations here agree with the popular belief in the statistical community that
there is nothing better than minimizing the orthogonal distances. However our
analysis does not fully explain this phenomenon; apparently, the contribution
from higher order terms (which our analysis ignores) accounts for the remarkable
stability of the geometric fit. Perhaps one should derive explicitly some higher
order terms, if one wants to understand why the geometric fit performs so well
in practice.

On the practical side, our tests show that the best algebraic circle fit—the
Hyper—is nearly equal to the geometric fit; the gain in accuracy (if any) is very
small, barely noticeable. Kanatani [102, 103] also admits that ‘hyperaccurate’
methods developed by the higher order analysis, which include O(σ4) terms, only
provide marginal improvement. Perhaps such studies, like Kanatani’s and ours,
may reveal interesting theoretical features of various estimators, but they fail to
produce significantly better practical algorithms.
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A real data example. We have also tested the Hyper circle fit on the real
data example described in Section 5.12. Our new fit returned a circle with

center = (7.3871, 22.6674), radius = 13.8144,

which is almost identical to the circles returned by the Pratt and Taubin fits; see
Section 5.12.

More experimental tests involving the Hyper fit are reported in Section 8.10.

Summary. All the known circle fits (geometric and algebraic) have the same
variance, to the leading order. The relative difference between them can be traced
to higher order terms in the expansion for the mean squared error. The second
leading term in that expansion is the essential bias, for which we have derived
explicit expressions. Circle fits with smaller essential bias perform better overall.
This explains a poor performance of the K̊asa fit, a moderate performance of the
Pratt fit, and a better performance of the Taubin and geometric fits (in this
order). We showed that there is no natural lower bound on the essential bias. In
fact we constructed an algebraic fit with zero essential bias (the Hyper fit), which
is nearly as accurate as the geometric fit, and sometimes exceeds it in accuracy.

7.7. Inconsistency of circular fits

We have seen in Section 6.10 that curve fitting methods are, generally, biased
and inconsistent. Here we examine these features closely for our circle fits.

Inconsistency of circular fits. In the late 1980s Berman and Culpin
[17, 18] investigated the inconsistency of two popular circle fitting algorithms:
the geometric fit and the algebraic K̊asa fit. We present their results here and
add other circle fits for comparison.

We use the notation and results of Section 6.10. According to Theorem 6.2,
the limit point (a∗, b∗, R∗) of the geometric circle fit satisfies

(7.54) (a∗g, b
∗
g, R

∗
g) = argmin

∫ [√
(x− a)2 + (y − b)2 −R

]2
dPσ

(here the subscript ‘g’ stands for ‘geometric’). One can easily minimize (7.54)
with respect to R and get

R∗
g =

∫ √
(x− a∗g)

2 + (y − b∗g)
2 dPσ.

For the K̊asa fit, we have

(a∗K, b∗K, R∗
K) = argmin

∫ [
(x− a)2 + (y − b)2 −R2

]2
dPσ.

Again, minimization with respect to R2 gives

(R∗
K)2 =

∫
(x− a∗K)2 + (y − b∗K)2 dPσ.
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The Pratt and Taubin fits are more easily expressed in terms of the algebraic
circle parameters A, B, C,D, in which the circle is defined by equation

Az + Bx + Cy + D = 0, where z = x2 + y2.

Now the limit point of the Pratt fit satisfies

(7.55) (A∗, B∗, C∗, D∗) = argmin

∫ [
Az + Bx + Cy + D

]2
dPσ

subject to the constraint

(7.56) B2 + C2 − 4AD = 1.

The limit point of the Taubin fit, see (5.49)–(5.51), is obtained by minimizing the
same integral (7.55), but subject to two constraints: one is (7.56) and the other
is ∫

(Az + Bx + Cy + D) dP = 0,

see Section 5.9. That additional constraint makes the limit point (A∗
T, B∗

T, C∗
T, D∗

T)
of the Taubin fit different from that of Pratt, (A∗

P, B∗
P, C∗

P, D∗
P).

After determining the limit points (A∗, B∗, C∗, D∗) for the Pratt and Taubin
fits one can apply the conversion formulas (3.11) to find the corresponding limit
values (a∗, b∗, R∗). We omit analytical derivation and present the final results
below.

The ‘hyperaccurate’ circle fit developed in Section 7.5 cannot be expressed in
the form (6.44), so we leave it out of our analysis.

Approximate limit points for circular fits. We give the limit points
(a∗, b∗, R∗) for all our circle fits approximately, to the leading order in σ. We
assume, as Berman [17] did, that the measure P0 describing the distribution of
the true points is either uniform on the entire circle or uniform on an arc of length
θ < 2π.

Now in both cases the geometric radius estimate satisfies

R∗
g = R +

σ2

2R
+O(σ3)

(note that it is independent of θ). This formula remarkably agrees with our early
expression (7.11) for the essential bias of the geometric fit. The Taubin estimate
is

R∗
T = R +

σ2

R
+O(σ3),

i.e. its asymptotic bias is twice as large, to the leading order. The Pratt limit
radius estimate is

R∗
P = R +

2σ2

R
+O(σ3),
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i.e. its asymptotic bias is four times larger than that of the geometric fit. These
relations between the three major fits resemble those established in Section 7.5.
Actually the Taubin and Pratt limits perfectly agree with the corresponding
expressions (7.53) and (7.52) for their essential biases.

The asymptotic radius estimate of the K̊asa fit depends on the size of the arc
θ where the true points are located, it is given by

(7.57) R∗
K = R +

[
1−

2 sin2(θ/2)
(θ/2)2

1 + sin θ
θ
− 2 sin2(θ/2)

(θ/2)2

]
σ2

R
+O(σ3).

If θ = 2π, i.e. if the true points cover the full circle, then

R∗
K = R +

σ2

R
+O(σ3),

i.e. K̊asa’s asymptotic bias is as small as Taubin’s (and twice as small as Pratt’s).
In fact the K̊asa fit is known to perform very well when the points are sampled
along the entire circle, so our results are quite consistent with practical observa-
tions.

However for small θ the fraction in (7.57) is large (it actually grows to infinity
as θ → 0), and this is where the K̊asa fit develops a heavy bias toward smaller
circles, the phenomenon already discussed at length in Chapter 5.

Illustration. Figure 7.1 shows the asymptotic radius estimate R∗ versus the
size θ of the arc containing the true points for all the four circle fits (here we plot
the exact R∗, rather than the approximations given above). We set R̃ = 1 and
σ = 0.05. Note again a heavy bias of the K̊asa fit for all θ < π.

For the limit points of the center estimators â and b̂ we have

(7.58) a∗ = a +O(σ3) and b∗ = b +O(σ3)

for the geometric fit, Taubin fit, and the Pratt fit, independently of the arc size θ.
Note that the second order terms O(σ2) are missing from (7.58) altogether; this
fact agrees with the absence of the essential bias of the corresponding estimates
of the circle center established earlier in (7.10), (7.52), and (7.53).

We see again that the estimates of the circle center are substantially less
biased than those of its radius. In fact, for θ = 2π, due to the obvious rotational
symmetry, we have precise identities: a∗ = a and b∗ = b (this fact was pointed
out in [18]).

For the K̊asa fit, the formulas for a∗ and b∗ involve non-vanishing terms of
order σ2, which are given by complicated expressions similar to (7.57), and we
omit them for brevity.
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Figure 7.1. The limit of the radius estimate R∗, as n → ∞,
versus the arc θ (the true value is R̃ = 1). The geometric fit is
marked by blue dots, the Pratt fit by green dash, the Taubin fit
by a black solid line, and the K̊asa fit by red dash-dot (note how
sharply the K̊asa curve plummets when θ < π).

7.8. Bias reduction and consistent fits via Huber

In Section 6.11 we mentioned some tricks that can be used to reduce the bias of
the circle radius estimator. We also described a general procedure (called adjusted
least squares) that produced asymptotically unbiased and consistent estimators,
in the large sample limit n → ∞. That procedure works for the polynomial
model only, where one fits a polynomial y = p(x) = β0 +β1x+ · · ·+βkx

k to data
points.

Here we describe similar procedures that work for implicit nonlinear models,
in particular for circles and ellipses. These are based on fundamental ideas of
Huber [85, 86, 87].

Unbiasing M-equations. Note that the maximum likelihood estimate (MLE)
of a parameter Θ is a solution to the maximum likelihood (ML) equation

(7.59) ∇Θ

(
ln L(Θ)

)
= 0,

where L(Θ) denotes the likelihood function and ∇Θ the gradient. In the case
of n independent observations xi = (xi, yi), we have L(Θ) =

∏n
i=1 f(xi;Θ), the
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product of the density functions; hence the equation (7.59) takes form

(7.60)
n∑

i=1

ΨMLE(xi;Θ) = 0

where ΨMLE(x;Θ) = ∇Θ ln f(x;Θ).
Huber [85, 86, 87] considers more general estimators defined by

(7.61)
n∑

i=1

Ψ(xi;Θ) = 0.

This equation is similar to (7.61), but here Ψ is not necessarily related to the
likelihood function. He calls (7.61) M-equation and its solution M-estimate; here
‘M’ stands for ‘maximum likelihood type’. Huber’s main purpose is constructing
robust estimators (i.e., estimators insensitive to outliers), but as it turns out,
Huber’s approach can be also used for construction of asymptotically unbiased
(rather than robust) estimators. We describe it next.

The M-equation (7.61) is said to be unbiased if for every observed point x

(7.62) E
[
Ψ(x; Θ̃)

]
= 0,

where Θ̃ again denotes the true parameter. (Note that we define the unbiasedness
of equation, not estimator.)

Theorem 7.1 (Huber [86]). If the M-equation is unbiased, then under certain

regularity conditions the corresponding M-estimator Θ̂ has an asymptotically nor-
mal distribution. Furthermore, n1/2(Θ̂−Θ̃) converges to a normal law with mean

zero. In particular, Θ̂ is asymptotically unbiased and consistent, in the limit
n →∞.

We note that the M-estimator obtained from an unbiased M-equation is not
truly unbiased, but its bias vanishes as n →∞.

Thus in order to obtain an asymptotically unbiased and consistent estimators,
one needs to modify the M-equation (7.61) defining a given estimator to ‘unbias’
it, i.e. to make it satisfy (7.62). This approach has been used in the EIV regression

analysis. In the case of fitting polynomials y =
∑k

i=0 βix
i to data, this was done

by Chan and Mak [30]. In the case of fitting conics (ellipses, hyperbolas), it
was done by Kukush, Markovsky, and van Huffel [114, 115, 130, 167]. Here we
apply this approach to circles, which will give novel methods for fitting circles.

‘Unbiasing’ algebraic circle fits. We have seen that algebraic circle fits
are defined by a matrix equation

(7.63) MA = ηNA,

see (7.22), where the components of the matrices M and N are either constants or
functions of the data xi, and A = (A, B, C,D)T denotes the (algebraic) parameter
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vector. This equation is slightly different from Huber’s M-equation (7.61), so we
have to extend Huber’s theory a bit. We say that a matrix M is unbiased if
E(M) = M̃, where M̃ is the ‘true’ value of M, i.e. the one obtained by the
substitution of the true points (x̃i, ỹi) for the observed data points (xi, yi); one

may call it the noise-free (σ = 0) version of M. In the same way we construct Ñ,
if the matrix N is also data-dependent. Then we have an analogue of Huber’s
theorem:

Theorem 7.2. Suppose an estimator Â is a solution of a matrix equation (7.63),

in which M and N are unbiased, i.e. E(M) = M̃ and E(N) = Ñ. Then n1/2(Â−
Ã) converges to a normal law with mean zero; in particular, Â is asymptotically
unbiased and consistent, in the limit n →∞.

Thus in order to obtain an asymptotically unbiased and consistent estimator,
one needs to modify the matrices M and N so that they become unbiased.

Interestingly, there is another benefit of making such a modification: it elim-
inates the essential bias of the estimator. Indeed, we have seen in (7.33) that the
essential bias is proportional to E(∆2M), thus if the matrix M is unbiased, i.e.

E(∆2M) = 0, then the estimator Â becomes essentially unbiased (its essential

bias is zero). The unbiasedness of N does not affect the essential bias of Â.

7.9. Asymptotically unbiased and consistent circle fits

Our construction of the unbiased versions of M and N for the algebraic circle
fits is similar to that developed for more general quadratic models by Kanatani
[93, 94, 95] and by Kukush, Markovsky, and van Huffel [114, 115, 130, 167].

First recall the structure of the matrix M:

M =


zz zx zy z̄
zx xx xy x̄
zy xy yy ȳ
z̄ x̄ ȳ 1

 .

A straightforward calculation shows that the mean values of its components are

E(x̄) = ¯̃x, E(ȳ) = ¯̃y, E(xy) = x̃ỹ,

E(xx) = x̃x̃ + V, E(yy) = ỹỹ + V, E(z̄) = ¯̃z + 2V,

E(zx) = z̃x̃ + 4¯̃xV, E(zy) = z̃ỹ + 4¯̃yV, E(zz) = z̃z̃ + 8¯̃zV + 8V 2,

where we denote, for convenience, V = σ2, and our ‘sample mean’ notation is
applied to the true points, i.e. ¯̃x = 1

n

∑
x̃i, etc.

Now it follows immediately that

E(xx− V ) = x̃x̃, E(yy − V ) = ỹỹ, E(z̄ − 2V ) = ¯̃z,

E(zx− 4x̄V ) = z̃x̃, E(zy − 4ȳV ) = z̃ỹ, E(zz − 8z̄V + 8V 2) = z̃z̃.
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Thus the unbiased version of M is constructed as

(7.64) Munbiased = M− V H + 8V 2I1,

where

H =


8z̄ 4x̄ 4ȳ 2
4x̄ 1 0 0
4ȳ 0 1 0
2 0 0 0

 and I1 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

We see now that E(Munbiased) = M̃.
Remarkably, the matrix H is our ‘old friend’: it is the constraint matrix (7.44)

for the ‘hyperaccurate’ circle fit. Actually, there is little wonder that we see it
again in this section: indeed, our basic goal is the same as in Section 7.5, i.e.
the removal of the essential bias. But now our goals extend further: we want an
asymptotically unbiased and consistent estimator, in the limit n →∞, and these
new features are ensured by the extra term 8V 2I1.

Remark 7.3. Some authors [94, 198] discard the fourth order term 8σ4I1 = 8V 2I1 in
an attempt to simplify computations. This simplification still allows them to eliminate
the essential bias, but the resulting estimator is no longer consistent.

In the case of the K̊asa and Pratt circle fits, the matrix N is constant and
needs no unbiasing. For the Taubin fit, N is data-dependent, cf. (7.21), but it has
a structure similar to that of M (in fact, even simpler), and it can be unbiased
similarly, we leave the details to the reader.

Actually, at this point the difference between our algebraic circle fits is no
longer significant, as the unbiasing procedure guarantees the same statistical
properties—the lack of essential bias and consistency—whichever fit we employ.
So we will restrict our analysis to the simplest algebraic fit: the K̊asa fit.

Thus we arrive at the following circle fitting algorithm: assuming that the
noise level V = σ2 is known, find A satisfying

(M− V H + 8V 2I1)A = ηNA

and corresponding to the smallest non-negative η. The resulting estimate has
essentially bias zero, and in addition it is asymptotically unbiased and consistent
in the limit n →∞.

Unknown noise level. In the above procedure, the parameter V = σ2 is
supposed to be known. In more realistic situations, however, it is unknown, and
then one has to estimate it. The simplest way to do this is fit a circle by the
above method with some (arbitrarily selected) σ2 > 0, then estimate σ2 by a
standard formula

σ̂2 =
1

n− k

n∑
i=1

d2
i ,
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where di’s are the distances from the data points to the fitted circle and k is the
number of unknown parameters (k = 3 for circles); then one can reduce the bias
using σ̂2 in place of σ2.

This does not seem to be a perfect solution, though, as the estimate σ̂2 is
computed from some initial fit, which may be essentially biased and inconsistent,
thus σ̂2 may not be very accurate. Then, after one refits the circle by using an
essentially unbiased and consistent fitting algorithm, it is tempting to reestimate
σ̂2 (using the distances from the data points to the new circle) and then recompute
the fit accordingly. Obviously, one can continue these adjustments recursively,
hoping that the process would converge, and the limit circle would be indeed
essentially unbiased and consistent.

The above iterative procedure is rather time consuming, and its convergence
cannot be guaranteed. A better alternative would be to incorporate the estima-
tion of σ2 into the construction of the essentially unbiased and consistent fit. Such
schemes have been designed by several authors independently, and we describe
them next.

7.10. Kukush-Markovsky-van Huffel method

KMvH consistent estimator.In the early 2000’s Kukush, Markovsky, and
van Huffel proposed a consistent estimator for the parameters of quadratic curves
(and surfaces) that are fitted to observed data. They started with ellipses whose
center was known [115], then went on to ellipsoids [130] and general quadratic
surfaces [114]; lastly, they provided complete and detailed mathematical proofs
in [167]. Though they never treated the problem of fitting circles, we will adapt
their approach to this task here. We abbreviate their algorithm as KMvH (after
Kukush, Markovsky, and van Huffel).

Their basic observation is that, as n →∞, the matrix Munbiased converges to
its true (noise-free) value M̃; in fact,

Munbiased = M̃ +OP (n−1/2),

according to the classical central limit theorem. The true matrix M̃ is posi-
tive semi-definite and singular; its only zero eigenvalue corresponds to the true
parameter vector Ã, because M̃Ã = 0, cf. Section 7.3.

Thus Kukush, Markovsky, and van Huffel estimate the unknown variance
V = σ2 by a value V̂ that makes the variable matrix

(7.65) Munbiased(V ) = M− V H + 8V 2I1

positive semi-definite and singular, i.e. they find V̂ such that

(7.66) Munbiased(V̂ ) ≥ 0 and detMunbiased(V̂ ) = 0.
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Then the eigenvector of Munbiased(V̂ ) corresponding to its zero eigenvalue would

be the desired estimate Â of the parameter vector, i.e. Â satisfies

(7.67) Munbiased(V̂ ) Â = 0.

Note that in this way one estimates σ2 and A simultaneously, thus eliminating
the need for further adjustments that were mentioned in Section 7.9.

Of course it is not immediately clear whether the value V̂ satisfying (7.66)
exists, or if it is unique. To this end Shklyar, Kukush, Markovsky, and van Huffel
[167] prove the following:

Theorem 7.4 ([167]). There is a unique value V̂ ≥ 0 that satisfies (7.66). For

all V < V̂ the matrix Munbiased(V ) is positive definite, and for all V > V̂ that
matrix is indefinite, i.e. it has at least one negative eigenvalue.

They actually proved that the minimal eigenvalue of the variable matrix
Munbiased(V ), let us call it λmin(V ), is a continuous function of V which is strictly

positive for V < V̂ and strictly negative for V > V̂ . Based on this theorem,
Shklyar, Kukush, Markovsky, and van Huffel [167] propose to simultaneously
estimate A and V via the bisection method as follows:

Step 1. Set VL = 0 so that λmin(VL) ≥ 0. If λmin(VL) = 0, go to Step 4. Set VR

to a large enough value such that λmin(VR) < 0. (It is shown in [167] that VR

may always be set to the minimum eigenvalue of the scatter matrix S defined by
(1.5).)

Step 2. Compute VM = 1
2
(VL + VR).

Step 3. If λmin(VM) ≥ 0, reset VL = VM, otherwise reset VR = VM. If λmin(VL) = 0
or VR − VL < tolerance, go to Step 4. Otherwise return to Step 2.

Step 4. Set V̂ = VL and compute Â as an eigenvector of Munbiased(V̂ ) corre-
sponding to its smallest eigenvalue.

The advantage of this bisection scheme is that it is guaranteed to converge,
though its convergence is slow (linear). We will see in Section 7.12 that one
can accelerate the procedure by using (approximate) derivatives of λmin(V ) and
Newton’s iterations; this was done by Kanatani. For the task of fitting circles, a
much faster non-iterative solution will be presented in Section 7.12.

Advantages of the KMvH estimator.Kukush, Markovsky, and van Huffel
[114, 167] derive many statistical and geometric properties of their estimators

Â and V̂ . First, both are strongly consistent, i.e.

Â → Ã and V̂ → σ̃2 as n →∞,

with probability one. In addition, Â = Ã + OP (n−1/2), in accordance with the
central limit theorem (see Remark 12 in [167]).
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Second, they proved that their estimators Â and V̂ are invariant under trans-
lations and rotations, thus the fitted curve and σ̂2 do not depend on the choice
of the coordinate system; see Theorems 30 and 31 in [167]. Of course, if one
rescales x and y by x 7→ cx and y 7→ cy with some constant c > 0, then σ̂2 is
replaced by c2σ̂2, as required.

A real data example. We have tested the KMvH estimator on the real
data example described in Section 5.12. That fit returned a circle with

center = (7.3857, 22.6688), radius = 13.8164,

which is very close to the circles returned by the Pratt and Taubin fits (Sec-
tion 5.12) and the Hyper fit (Section 7.6). Actually, it is closer to the ideal circle
(5.71) than circles returned by other fits.

Back to the known σ2 case.We note that choosing Â as an eigenvector
of Munbiased(V̂ ) corresponding to its minimal (i.e., zero) eigenvalue is equivalent

to minimizing AT Munbiased(V̂ )A subject to ‖A‖ = 1. This may suggest that in
the case of known V = σ2, one could also minimize AT Munbiased(V )A subject

to ‖A‖ = 1, where the known V is used, instead of its estimate V̂ . One might
expect that using the exact true value of V , rather than statistically imprecise
estimate V̂ , will improve the accuracy of the resulting fit.

Surprisingly, the substitution of the known V for its estimate V̂ can only lead
to complications, as Shklyar and others [167] discover. First, the resulting esti-

mate Â will not be translation invariant (though it remains rotation invariant);
see [167]. To remedy the situation, Shklyar and others [167] propose, if one wants
to use the known V , another constraint that ensures translation invariance. In
the case of circles, it coincides with the K̊asa constraint, i.e. we need to minimize
AT Munbiased(V )A subject to ATKA = 1, where K was introduced in (7.19) and
V is the known variance. This method guarantees translation invariance.

Furthermore, even with the right constraint, the use of the known value of
V = σ2, instead of its estimate V̂ , may not improve the accuracy. Kukush,
Markovsky, and van Huffel [114, 115] experimentally compared two estimation
procedures for fitting ellipses. One uses the known value of V = σ2 and com-
putes a translation invariant ellipse fit, as mentioned above. The other ignores
the known V and estimates it, according to Steps 1–4 described earlier in this
section. Rather surprisingly, the second method consistently demonstrated the
better performance, i.e. produced more accurate ellipse fits.

This may appear rather illogical. The authors of [114, 115] do not offer any
explanation for their paradoxical observations. One may speculate that estimat-
ing σ2 allows the algorithm to ‘adapt’ to the data better, while trying to use the
fixed value of σ2 for every sample may be distractive. Perhaps, this phenomenon
requires further investigation.
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7.11. Renormalization method of Kanatani: 1st order

Renormalization method of Kanatani is one of the most interesting (and per-
haps controversial) tools for designed fitting various quadratic models to data, in
particular for fitting ellipses to observed points. Even though it has never been
applied to circles yet, our exposition would be incomplete if we did not include
Kanatani’s method; besides, it happens to be very closely related to the KMvH
algorithm of Section 7.10.

Historical remarks.Kanatani developed his method in the early 1990s (see
[93, 94, 95]) aiming at the reduction of bias in two standard image processing
tasks, one of them was fitting ellipses to data (the other, fundamental matrix
computation, is not covered here). His method instantly captured attention of
the computer vision community due to several well presented examples, in which
an apparent bias was removed entirely. The effect of Kanatani’s first publications
was spectacular. But the theoretical construction of his method was quite ob-
scure, and for several years it remained surrounded by mystery [101, 182, 181].

It took the community almost a decade to fully understand Kanatani’s method.
In 2001, Chojnacki et. al. [47] published a lengthy article amply titled “Rational-
ising the renormalisation method of Kanatani”, where they thoroughly compared
Kanatani’s method to other popular fitting algorithms and placed all of them
within a unified framework. By now technical aspects of Kanatani’s method are
well understood, but its statistical properties and its relation to other statistical
procedures are not yet fully determined.

Here we reveal a surprising fact: the renormalization method of Kanatani
and the consistent estimator by Kukush, Markovsky, and van Huffel (KMvH,
Section 7.10) are identical, they are twins! This is all the more surprising because
Kanatani never aimed at consistency, his only stated goal was bias reduction.
Nonetheless his algorithm produces exactly the same results as the consistent
KMvH; in fact its practical implementation is perhaps superior to that of the
KMvH.

Kanatani’s method versus the KMvH algorithm.Kanatani studied pa-
rameter estimators which were based on the solution of a generalized eigenvalue
problem

(7.68) MA = ηNA,

where A denotes the vector of unknown parameters, and M and N are some
matrices that may depend on both data and unknown parameters. Many ellipse
fitting methods and fundamental matrix computation fall into this category, and
so do our algebraic circle fits; see (7.63).

Just like Huber (see our Section 7.8), Kanatani realized that the main source

of bias for the estimate Â, which solves (7.68), was the biasedness of the matrix



202 7. STATISTICAL ANALYSIS OF CIRCLE FITS

M. Then he constructed an unbiased version of the matrix M, which in the circle
fitting case is the matrix Munbiased(V ) given by (7.64).

Next, just like Kukush et al., Kanatani proposed to find V = V̂ such that
Munbiased(V ) would be positive semi-definite and singular; i.e. he proposed to es-

timate V by the rules (7.66). Lastly, he proposed to compute Â as an eigenvector

of Munbiased(V̂ ) corresponding to its zero eigenvalue. In other words, Kanatani
arrived at the estimator (7.65)–(7.67); thus his method (theoretically) coincides
with that of Kukush, Markovsky, and van Huffel.

Kanatani did not prove that the solution V̂ of the problem (7.65)–(7.66)
existed or was unique, but he proposed to solve the problem (7.65)–(7.66) by a
relatively fast iterative scheme that he called renormalization method. In fact, he
designed two versions of that method, we describe them next.

First order renormalization.In one (simpler) version, Kanatani drops the
second order term 8V 2I1 from (7.65) and solves a reduced problem: find V such
that the matrix

(7.69) Munbiased,1(V ) = M− V H

is positive semi-definite and singular. Then he computes Â as the eigenvector of
this matrix corresponding to its zero eigenvalue.

Such an approximation still leads to an estimator Â with no essential bias, but
Â is no longer consistent, cf. Remark 7.3. (As consistency was not Kanatani’s
concern, the approximation (7.69) was legitimate for his purpose of reducing
bias.)

Then Kanatani rewrites (7.69) as

Munbiased,1(V )AV = MAV − V HAV = λmin(V )AV ,

where λmin(V ) is the minimal eigenvalue of Munbiased,1(V ) and AV the corre-
sponding unit eigenvector. Premultiplying by AT

V gives

(7.70) AT
V Munbiased,1(V )AV = AT

V MAV − V AT
V HAV = λmin(V ).

Now our goal is to solve equation λmin(V ) = 0, i.e. find a zero of the above
function. It is a nonlinear function of V , and Kanatani proposes to approximate
its derivative by fixing the vector AV , which gives

λ′min(V ) ≈ −AT
V HAV .

Then Kanatani applies the standard Newton method: given a current approxi-
mation Vk to V̂ , he finds the next one by

(7.71) Vk+1 = Vk +
λmin(Vk)

AT
Vk

HAVk

,
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then he computes AVk+1
as the corresponding unit eigenvector of Munbiased,1(Vk+1).

These iterations continue until they converge. The initial guess is chosen as
V0 = 0. Kanatani calls this scheme first order renormalization method.

Kanatani did not prove the convergence of his iterative scheme, but it was
tested in many experiments by various researchers and turned out to be very
reliable.

Adaptation to circles.Kanatani actually developed his method for the more
complicated problem of fitting ellipses, where the matrices M and H depended
not only on the data, but also on the parameter vector A, hence they needed to
be recomputed at every iteration. In our case M and H are independent of A,
and then Kanatani’s first order problem (7.69) easily reduces to the generalized
eigenvalue problem

MA = V HA.

In other words, V̂ is the smallest eigenvalue and Â is the corresponding eigen-
vector of the matrix pencil (M,H); this problem can be solved in one step (by
using matrix algebra software) and needs no iterations. In fact, its solution is
nothing but our familiar Hyper fit, see Section 7.5. Thus in the case of fitting
circles, Kanatani’s first order scheme coincides with the Hyperaccurate algebraic
fit.

7.12. Renormalization method of Kanatani: 2nd order

Second order renormalization.This version keeps the second order term
8V 2I1 in place. The equation (7.70) now takes its full form

(7.72) λmin(V ) = AT
V MAV − V AT

V HAV + 8V 2AT
V I1 AV = 0.

Kanatani proposes to solve (7.72) by the following iterative scheme. Given a

current approximation Vk to V̂ , he fixes the vector AVk
and then approximates

the function λmin(V ) by a quadratic polynomial,

(7.73) λmin(V ) ≈ β0 + β1V + β2V
2,

where

β0 = AT
Vk

MAVk
, β1 = −AT

Vk
HAVk

, β2 = 8AT
Vk

I1 AVk
.

The next approximation to V̂ is computed as the smaller root of (7.73), i.e.

(7.74) Vk+1 =
−β1 −

√
β2

1 − 4β0β2

2β2

.

Kanatani takes the smaller root because he is aiming at the minimal eigenvalue
of Munbiased(V ). Normally, the polynomial (7.73) has two real roots, and the
smaller one is computed by (7.74).
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It may happen that the polynomial (7.73) has no real roots, which occurs
whenever β2

1 < 4β0β2. Then the quadratic approximation (7.73) is fruitless. In
that case Kanatani goes back to the first order scheme and applies (7.71). Thus
Vk+1 is found by

Vk+1 =


−β1−

√
β2
1−4β0β2

2β2
if β2

1 ≥ 4β0β2

Vk + λmin(Vk)

AT
Vk

HAVk

otherwise
.

Once Vk+1 is found, Kanatani computes AVk+1
as the corresponding unit eigenvec-

tor of the matrix Munbiased(Vk+1). These iterations continue until they converge.
The initial guess is chosen again as V0 = 0. Kanatani called this scheme the
second order renormalization method.

Kanatani did not prove the convergence of this iterative scheme, but just like
his first order method it was tested in many experiments by various researchers
and turned out to be very reliable.

Adaptation to circles.Kanatani’s original work [93, 94, 95] treats general
quadratic curves (ellipses and hyperbolas). His matrices M and H depend on
the parameter vector, hence they needed to be recomputed at every iteration.

In our case M and H are independent of A, and then Kanatani’s second order
method can be greatly simplified. First, it reduces to the quadratic generalized
eigenvalue problem

(7.75) MA− V HA + 8V 2I1A = 0.

In other words, V̂ is the smallest eigenvalue and Â is the corresponding eigen-
vector of the quadratic pencil (M,H,−8I1).

The quadratic generalized eigenvalue problem (7.75) can be further reduced
to a linear generalized eigenvalue problem by the following standard scheme, see
e.g. [46, 47]:

(7.76)

[
M −H
0 I

] [
A
B

]
= V

[
0 −8I1

I 0

] [
A
B

]
,

where I is the 4× 4 identity matrix. Note that the second line enforces B = V A.
(This scheme is similar to a standard reduction of a second order differential
equation y′′ = f(x, y, y′) to a first order system of equations z′ = f(x, y, z) and
y′ = z.)

It is now tempting to solve the linear generalized eigenvalue problem (7.76) by
using a standard matrix algebra software, for example by calling the function ‘eig’
in MATLAB. We found, however, that the ‘eig’ function tends to fail on (7.76)
quite frequently (in 10-20% of simulated cases). The cause of failure is that the
linear generalized eigenvalue problem (7.76) is singular ; in fact, the double size
(8× 8) matrix on the right hand side of (7.76) has rank 5.
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A similar problem arises when one fits ellipses [46, 47]. To remedy the situ-
ation one should change variables and reduce the dimension of the matrices until
all of them become non-singular, cf. an example in [46].

In our case we can simply use the forth equation in (7.75), i.e.

Az̄ + Bx̄ + Cȳ + D = 2V A,

as it allows us to replace 2V A in the last term of (7.75) by Az̄ + Bx̄ + Cȳ + D.
As a result, (7.75) transforms to

(7.77) MA = V H∗A,

where

H∗ =


4z̄ 0 0 −2
4x̄ 1 0 0
4ȳ 0 1 0
2 0 0 0

 .

Thus we reduce the quadratic generalized eigenvalue problem (7.75) to a non-
singular linear generalized eigenvalue problem, (7.77). Both matrices in (7.77)
are non-singular.

In fact, detH∗ = −4, which guarantees that the matrix H∗ is well conditioned
(unless the coordinates of the data points assume abnormally large values, which
can be easily prevented by a proper choice of the coordinate scale). Therefore, the
generalized eigenvalue problem (7.77) can be safely transformed to an ordinary
eigenvalue problem

(7.78) H−1
∗ MA = V A,

which can be solved by standard matrix methods. Such a solution will be nu-
merically stable; see Section 7.7 in [78]. In our numerical tests, we just called
the MATLAB function ‘eig’ to solve (7.77), and the obtained solution appeared
to be stable and reliable.

On the other hand, the matrix H∗ is not symmetric, hence one cannot apply
Sylvester’s law of inertia to determine the signs of the eigenvalues of (7.77).
We found experimentally that in about 50% of our simulated samples all the
eigenvalues were real and positive, and in the other 50% there were two complex
eigenvalues and two real positive eigenvalues. We plan to look into this issue
further.

Some more experimental tests. We modified the experiment reported in
Section 7.6 to test the performance of various circle fits in the large sample limit,
i.e. as n → ∞ and σ > 0 fixed. We increased the sample size from n = 20 to
n = 50, 000. As before, for each n we set n true points equally spaced along a
semicircle of radius R = 1 and generated random samples by adding a Gaussian
noise at level σ = 0.05 to each true point.



206 7. STATISTICAL ANALYSIS OF CIRCLE FITS

Pratt Taubin geometric Hyper Consistent

n = 20 5.6301 5.4945 5.4540 5.4555 5.4566

n = 100 1.5164 1.3451 1.2952 1.2892 1.2895

n = 1, 000 0.3750 0.1947 0.1483 0.1341 0.1341

n = 10, 000 0.2557 0.0745 0.0286 0.0135 0.0134

n = 50, 000 0.2450 0.0637 0.0180 0.00272 0.00270

Table 7.3. Mean squared error for five circle fits (104×values are
shown). In this test n points are placed (equally spaced) along a
semicircle of radius R = 1 and the noise level is σ = 0.05.

The results are summarized in Table 7.3. It shows the mean squared error
(MSE) of the radius estimate R̂ for each circle fit (obtained by averaging over 106

randomly generated samples). We see that for small samples, n < 100, all the
circle fits perform nearly equally well. For larger samples, they have very different
characteristics. The MSE of the Pratt fit is the biggest, due to its highest essential
bias; see Section 7.6. The MSE of the Taubin fit is about 4 times smaller, again
because its essential bias is half of that of Pratt (Section 7.6). The MSE of
the geometric fit is about 4 times smaller than that of Taubin, again in perfect
agreement with our theoretical analysis of Section 7.1.

The Hyper fit introduced in Section 7.5 has zero essential bias, hence its MSE
becomes very small for very large samples; its mean error is several times smaller
than that of the geometric fit! However, the Hyper fit is inconsistent, in view of
our early analysis, hence its MSE does not completely vanish as n →∞.

Lastly, the Consistent fit included in Table 7.3 is the one computed by (7.77),
which is nothing but our implementation of the two (theoretically identical) es-
timators: the Kukush-Markovsky-van Huffel (KMvH) method from Section 7.10
and the second order renormalization method of Kanatani from this section. We
see that the Consistent circle fit becomes the most efficient for very large samples
(n > 1, 000).

In image processing applications, the sample size n typically ranges from
10-20 to several hundreds. It is not normal to have n > 1, 000 data points,
although occasionally digitized images of circular arcs consist of thousands of
points (pixels), see below.

For example, in an archaeological research by Chernov and Sapirstein [44],
circular arcs appear as fragments of wheelmade and molded circular architec-
tural terracottas whose original diameters are unknown and need be determined.
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Using a profile gauge, the profiles are transferred to graph paper, scanned, and
transformed into an array of black and white pixels with a threshold filter. The
data points are the x and y coordinates of black pixels measured in centimeters.
The arcs usually consist of 5,000 to 20,000 points and subtend angles ranging
from 5o to 270o. A typical digitized arc is shown in Fig. 7.2; on that arc there
are 6045 black pixels. In a few arcs examined in [44], the number of pixels was
close to 40,000.
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Figure 7.2. A typical arc drawn by pencil with a profile gauge
from a circular cover tile. This scanned image contains 6045 pixels.

But even for samples that are very large by all practical standards, the advan-
tage of the consistent circle fit over the Hyper fit or the geometric fit is minuscule
and negligible. The authors of [44] reported that on samples consisting of 5,000
to 40,000 points there were no visible differences between circles obtained by the
geometric fit or by algebraic fits.

We conclude therefore that, at least in the case of fitting circles to data in
image processing, consistent fits appear to be interesting only from academic per-
spectives. On the other hand, in statistical applications, where both σ and n may
be large, consistent estimators are of practical importance [114, 115, 130, 167].





CHAPTER 8

Various ‘exotic’ circle fits

In this chapter we describe a few mathematically sophisticated circle fitting
methods. Some involve complex numbers and conformal mappings of the complex
plane [25, 82, 123, 159, 175, 173]. Others make use of trigonometric change
of parameters [106, 107].

While the use of highly advanced mathematical tools seems promising and
attractive, the resulting fits do not happen to perform better than the more basic
fits we have covered already. Still these approaches are aesthetically appealing
and may turn out productive in the future, so we review them in this chapter.

8.1. Riemann sphere

The idea of treating observed points (xi, yi) as complex numbers

zi = xi + iyi, i =
√
−1

and then using the geometry of the complex plane and elements of complex
analysis is very attractive and has been explored by several authors in different
ways. Here we present a general method that maps the observed points onto the
Riemann sphere.

Extended complex plane. The complex plane is the regular xy plane where
every point (x, y) becomes a complex number written as z = x + iy. Complex
numbers are added and subtracted as 2D vectors

(a + ib)± (c + id) = (a± b) + i(c± d),

but their multiplication and division use the fact that i2 = −1:

(a + ib)(c + id) = (ac− bd) + i(bc + ad)

and
a + ib

c + id
=

(a + ib)(c− id)

(c + id)(c− id)
=

ac + bd

c2 + d2
+ i

bc− ad

c2 + d2
.

The latter formula applies whenever c2 +d2 6= 0, i.e. the divisor c+ id must differ
from zero.

It is convenient to add a special point, ‘infinity’ (denoted by ∞), to the
complex plane, and allow formulas like 1

0
= ∞ and 1

∞ = 0. That extra point
makes the complex plane compact, in topological sense. More precisely, every

209
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sequence zn = an + ibn of complex numbers whose absolute values grow, i.e.
|zn| =

√
a2

n + b2
n →∞, now converges to that special point ∞.

The complex plane is denoted by C. The complex plane with the added point
∞ is denoted by C̄ = C ∪ {∞}, it is called the extended complex plane.

Stereographic projection. One can conveniently map the extended com-
plex plane onto a sphere by using stereographic projection illustrated in Fig-
ure 8.1.

Denote by

S =
{
(x, y, z) : x2 + y2 + (z − 1

2
)2 = 1

4

}
the sphere in the xyz space (whose xy coordinate plane is identified with the
complex plane) of radius r = 1

2
centered on the point (0, 0, 1

2
). This is Riemann

sphere. It ‘rests’ on the complex plane: its south pole (0, 0, 0) is right at the
origin of the xy plane, and its north pole (0, 0, 1) is right above it.

Now every point (x, y, 0) in the xy plane can be joined by a line with the
north pole of the sphere. This line intersects the sphere in a unique point below
the north pole. The coordinates of the intersection point are

x′ = x/(1 + x2 + y2)

y′ = y/(1 + x2 + y2)(8.1)

z′ = (x2 + y2)/(1 + x2 + y2).

This defines a map from the xy plane onto the sphere S: it takes every point
(x, y) ∈ C to the point (x′, y′, z′) on the sphere. This map can be visualized as
the complex plane C ‘wrapped around’ the sphere S. The inverse map, taking
the sphere back onto the plane, is called stereographic projection, it ‘unfolds’ the
sphere onto the plane under it.

The above map is not defined at the north pole of the sphere. The map
becomes complete if we transform the north pole to the special point∞ ∈ C̄. This
makes sense as complex numbers with large absolute values are mapped to points
near the north pole on the sphere. This establishes a one-to-one correspondence
(bijection) between the extended complex plane C̄ and the Riemann sphere S.
This bijection is continuous in both directions; in mathematical terms, it is a
homeomorphism.

Transformation of lines and circles. An important property of the Rie-
mann sphere is that lines and circles in the complex plane are transformed into
circles on the Riemann sphere.

Theorem 8.1. If L ⊂ C is a line in the complex plane, then its image on the
Riemann sphere is a circle (passing through the north pole). If O ⊂ C is a
circle in the complex plane, then its image on the Riemann sphere is a circle (not
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North pole

Plane

Figure 8.1. Stereographic projection of the Riemann sphere onto
the plane. Data points (hollow circles) are mapped onto the sphere
(black dots).

passing through the north pole). Conversely, every circle on the Riemann sphere
is mapped onto a line or a circle in C.

Thus, lines and circles in the xy plane uniquely correspond to circles on the
Riemann sphere S.

Recall that when one fits circles to observed data, then lines should be allowed
as well, i.e. one should use the ‘extended’ model consisting of lines and circles;
see Chapter 3. On the Riemann sphere, both types of objects are conveniently
represented by circles.

8.2. Simple Riemann fits

The previous section suggests the following circle fit, which was originally
proposed in 1997 by Lillekjendlie [123] and further developed by him and his
co-authors in [175, 173]. It consists of three steps:

Step 1. Map the data points (xi, yi) onto the Riemann sphere according to
formulas (8.1). This produces n points (x′i, y

′
i, z

′
i) on the sphere.

Step 2. Fit a circle to the points (x′i, y
′
i, z

′
i) on the sphere. Since a circle on the

sphere is obtained by intersection of the sphere with a plane, one just needs to
fit a plane to the points (x′i, y

′
i, z

′
i).

Step 3. After finding the best fitting circle on the Riemann sphere, project it
back onto the xy plane and get a circle (or a line) fitting the original data set
(xi, yi).
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The last step is a straightforward exercise in elementary geometry. Suppose
the plane obtained at Step 2 is given by equation

(8.2) αx′ + βy′ + γz′ + c = 0.

Then the center (a, b) of the circle fitting the original data set is computed by

a = − α

2(c + γ)
, b = − β

2(c + γ)
,

and its radius R is computed by

R2 =
α2 + β2 − 4c(c + γ)

4(c + γ)2
.

These formulas are derived in [123, 175], we leave it to the reader to verify the
details.

The above formulas fail if c + γ = 0, which happens exactly when the plane
(8.2) passes through the north pole (0, 0, 1). In that case the best fit to the original
data set is achieved by a straight line (rather than a circle). The equation of the
fitting line is

αx + βy + c = 0.

The main issue is to fit a plane to the spacial points (x′i, y
′
i, z

′
i) in Step 2. We

describe several approaches to this task.

Very simple plane fitting scheme. In his original paper [123] in 1997,
Lillekjendlie followed the recipes of the classical linear regression. He describes
the plane by an explicit equation

z = px + qy + r

and then minimizes

Fclassic(p, q, r) =
n∑

i=1

[
z′i − (px′i + qy′i + r)

]2
.

This minimization problem easily reduces to a system of linear equations and
has a simple explicit solution. Observe that this scheme actually minimizes the
distances to the points (x′i, y

′
i, z

′
i) in the z direction.

Despite simplicity, this scheme has obvious disadvantages. Most notably, it
does not account for vertical planes px + qy + r = 0. Omitting all vertical planes
results in omitting all circles and lines passing through the origin in the x, y plane.
This is a serious omission recognized by Lillekjendlie [123], and in the next paper
he improved the fitting scheme, see below.



8.3. RIEMANN FIT: THE SWFL VERSION 213

Geometric plane fitting. In 2000, Lillekjendlie and his co-authors [175]
minimize geometric distances from the points (x′i, y

′
i, z

′
i) to the plane (8.2), i.e.

they minimize the function

F(α, β, γ, c) =
n∑

i=1

[αx′i + βy′i + γz′i + c]2

α2 + β2 + γ2
.

To resolve the issue of undeterminate parameters, they actually minimize

(8.3) Fgeom(α, β, γ, c) =
∑

[αx′i + βy′i + γz′i + c]2

subject to the constraint α2 + β2 + γ2 = 1. This constraint means that n =
(α, β, γ) is a unit normal vector to the plane.

The geometric fit of a 2D plane to a set of points in 3D is very similar to
the geometric fit of a line to a set of points in 2D thoroughly discussed in our
Chapter 1 and Chapter 2. Without going into details (which can be found in
[175]) we just say that the vector n must be the eigenvector of the 3× 3 scatter
matrix S corresponding to its smallest eigenvalue. The scatter matrix S is defined
by

(8.4) S = 1
n

n∑
i=1

(ri − r̄)(ri − r̄)T ,

where ri = (x′i, y
′
i, z

′
i)

T is the ith ‘data vector’ and r̄ = 1
n

∑
ri. This formula for

S generalizes our earlier formula (1.5) for the 2D scatter matrix.
Lastly, c is determined from the equation

(8.5) α
∑

x′i + β
∑

y′i + γ
∑

z′i + nc = 0,

which simply means that the best fitting plane passes through the centroid r̄ of
the data set (x′i, y

′
i, z

′
i); compare (8.5) to (1.14).

The geometric fitting scheme does not omit any planes, so all circles and lines
in the xy plane can be obtained. Still, this scheme has a serious drawback in
that it minimizes the distances to the points (x′i, y

′
i, z

′
i), which may have nothing

to do with the distances from the original points (xi, yi) to the fitting circle. The
authors of [175] recognized this fact and modified their scheme accordingly, see
the next section.

The authors of [175] call circle fits involving the transformation to the Rie-
mann sphere Riemann fits.

We call the above two versions simple Riemann fits , they are fast but statis-
tically not sound.

8.3. Riemann fit: the SWFL version

To relate the distances in the xy plane to the distances on the Riemann sphere
we invoke the following fact in complex analysis.
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Conformality. Let Φ denote the map from the xy plane to the sphere S
given by (8.1), i.e. we write Φ(x, y) = (x′, y′, z′). Let DΦ denote the derivative of
the map Φ, i.e. its linear part. Precisely, DΦ transforms tangent vectors (dx, dy)
to the xy plane into tangent vectors (dx′, dy′, dz′) to the sphere S. Note that
DΦ is a 3× 2 matrix consisting of partial derivatives of expressions in (8.1) with
respect to x and y.

Theorem 8.2. The map Φ is conformal at every point (x, y). That is, its de-
rivative DΦ satisfies two requirements:
(i) it preserves angles between tangent vectors and
(ii) it contracts all tangent vectors uniformly.
More precisely, if (dx′, dy′, dz′)T = DΦ(dx, dy)T , then

‖(dx′, dy′, dz′)‖ = (1 + x2 + y2)−1‖(dx, dy)‖.

Note that the contraction factor (1 + x2 + y2)−1 does not depend on the direction
of the tangent vector (dx, dy).

One can verify all these claims directly, by computing the matrix DΦ of partial
derivatives of the formulas (8.1) with respect to x and y. This can be done a
little easier if one rewrites (8.1) in polar coordinates (r, θ) on the xy plane:

x′ = r cos θ/(1 + r2)

y′ = r sin θ/(1 + r2)

z′ = r2/(1 + r2).

Now one can conveniently differentiate x′, y′, z′ with respect to θ (in the tangent
direction) and with respect to r (in the radial direction). We leave the details to
the reader.

Relation between distances. Let P and Q be two nearby points on the xy
plane and d = dist(P, Q). Denote by d′ the distance between their images Φ(P )
and Φ(Q) on the sphere. According to the above theorem, d′ and d are related
by

d′ = (1 + x2 + y2)−1d +O(d2)

where (x, y) are the coordinates of P (or Q). Thus, to the first order, the distances
between points are contracted by the factor of (1 + x2 + y2)−1.

Furthermore, if a point P = (x, y) is the distance d from a circle (or line) O
on the plane, then its image Φ(P ) is the distance

(8.6) d′ = (1 + x2 + y2)−1d +O(d2)

from the circle Φ(O) on the sphere S. Thus, to the first order, the distances to
circles are contracted by the same factor of (1 + x2 + y2)−1.
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Next, let gain Φ(O) denote a circle on the sphere S and Φ(P ) a nearby point
a distance d′ from the circle O. Let P denote the plane containing the circle O
and

αx′ + βy′ + γz′ + c = 0

its equation in the spacial coordinates, as before. Let d′′ denote the orthogonal
distance from the point Φ(P ) to the plane P. Then d′′ and d′ are related by

(8.7) d′′ =

√
α2 + β2 − 4c(γ + c)√

α2 + β2 + γ2
d′ +O([d′]2).

We note that whenever the fitting plane (8.2) intersects the Riemann sphere, the
distance from its center (0, 0, 1

2
) to the plane is ≤ 1

2
, hence α2 +β2−4c(γ+c) ≥ 0,

which guarantees that the first square root in (8.7) is well defined. Combining
the above formulas (8.6) and (8.7) gives

d′′ =

√
α2 + β2 − 4c(γ + c)√

α2 + β2 + γ2
× d

1 + x2 + y2
+O(d2).

If the point Φ(P ) has coordinates (x′, y′, z′), then

d′′ =
|αx′ + βy′ + γz′ + c|√

α2 + β2 + γ2

Combining the above two formulas gives

d =

∣∣(αx′ + βy′ + γz′ + c)(1 + x2 + y2)
∣∣√

α2 + β2 − 4c(γ + c)
+O(d2).

Objective function. Thus, if one wants to minimize distances di from the
original points (xi, yi) to the fitting circle, then one should minimize

(8.8) F(α, β, γ, c) =
n∑

i=1

(1 + x2
i + y2

i )
2(αx′i + βy′i + γz′i + c)2

α2 + β2 − 4c(γ + c)
,

which would be accurate to the first order. Again, to resolve the issue of unde-
terminate parameters, one can impose the constraint α2 + β2 + γ2 = 1.

The above method is similar to the gradient-weighted algebraic fit (GRAF)
described in Section 6.5, both are based on the first order approximation to the
geometric distances from data points to the fitting curve.

Riemann fit, the SWFL version. Before we continue the analysis of the
objective function (8.8) we describe the fitting procedure proposed by Strandlie,
Wroldsen, Frühwirth, and Lillekjendlie in [175].

They derive the formula (8.8), but then they made an improper allegation:
since the denominator α2 +β2−4c(γ +c) is constant, i.e. independent of the data
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point (xi, yi), then it does not affect the least squares procedure. Based on this,
they discard the denominator in (8.8). We will return to this issue later.

Thus the authors of [175] minimize a simpler objective function,

(8.9) FSWFL(α, β, γ, c) =
n∑

i=1

(1 + x2
i + y2

i )
2(αx′i + βy′i + γz′i + c)2

subject to the constraint α2 + β2 + γ2 = 1.
The numerical implementation of this procedure is quite straightforward. One

precomputes the weights wi = (1 + x2
i + y2

i )
2 and then solves the weighted least

squares problem by minimizing

(8.10) FSWFL(α, β, γ, c) =
n∑

i=1

wi(αx′i + βy′i + γz′i + c)2

subject to the constraint α2+β2+γ2 = 1. The only difference between (8.10) and
(8.3) is the presence of weights here. Thus the solution (α, β, γ) minimizing (8.10)
must be the eigenvector of the 3× 3 weighted scatter matrix Sw corresponding to
its smallest eigenvalue. The weighted scatter matrix Sw is defined by

(8.11) Sw =
1∑
wi

n∑
i=1

wi(ri − r̄)(ri − r̄)T ,

where ri = (x′i, y
′
i, z

′
i)

T is the ith ‘data vector’ and r̄ =
(∑

wiri

)
/
(∑

wi

)
. This

formula generalizes our earlier (8.4). Note that the factor 1/
(∑

wi

)
in (8.11)

is irrelevant and can be dropped. The last parameter c is determined from the
equation

α
∑

wix
′
i + β

∑
wiy

′
i + γ

∑
wiz

′
i + c

∑
wi = 0;

compare it to (8.5).
This is the Riemann fit proposed by Strandlie, Wroldsen, Frühwirth, and

Lillekjendlie in [175], we abbreviate it as SWFL, by the names of the authors.
So we call this procedure the Riemann fit, the SWFL version . Computa-

tionally, it is only slightly more expensive than the second simple Riemann fit of
Section 8.2, as the present fit involves weights; those must be precomputed and
used as extra factors in various formulas. The statistical analysis of the SWFL
Riemann fit will be completed in the next section.

A real data example. We have tested the SWFL Riemann fit on the real
data example described in Section 5.12. That fit returned a circle with

center = (7.4071, 22.6472), radius = 13.7863,

which is good, but slightly worse than the circles returned by simpler and faster
algebraic circle fits (see Chapter 5 and Chapter 7).
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8.4. Properties of the Riemann fit

Algebraic formulation of the SWFL Riemann fit. We can relate the
SWFL Riemann fit to the algebraic circle fits discussed in Chapter 5 by expressing
the objective function (8.9) in terms of the original data points (xi, yi). By using
(8.1) we obtain

(8.12) FSWFL(α, β, γ, c) =
n∑

i=1

[
αxi + βyi + γ(x2

i + y2
i ) + c(1 + x2

i + y2
i )

]2

subject to the constraint α2 + β2 + γ2 = 1.
Now let us use our old notation zi = x2

i + y2
i . Then the above fit is equivalent

to minimizing

(8.13) FSWFL(α, β, γ, c) =
n∑

i=1

[
αxi + βyi + γzi + c(1 + zi)

]2

α2 + β2 + γ2
,

without constraints. Now let us change parameters as

(8.14) A = γ + c, B = α, C = β, D = c.

Then we can rewrite the objective function as

(8.15) FSWFL(A, B, C,D) =
n∑

i=1

[Azi + Bxi + Cyi + D]2

(A−D)2 + B2 + C2
.

Equivalently, one can minimize

(8.16) F(A, B, C,D) =
n∑

i=1

[Azi + Bxi + Cyi + D]2

subject to the constraint

(8.17) (A−D)2 + B2 + C2 = 1.

The objective function (8.16) is used by every algebraic circle fit in Chapter 5,
those fits only differ by different constraints. The one given here by (8.17) is new,
we have not seen it yet. Thus, the SWFL Riemann fit is nothing but yet another
algebraic circle fit characterized by the unusual constraint (8.17).

Analysis of the SWFL Riemann fit. The constraint of an algebraic circle
fit can be written in the matrix form as ATNA = 1, where A = (A, B, C,D)T .
The constraint (8.17) corresponds to the matrix

(8.18) N =


1 0 0 −1
0 1 0 0
0 0 1 0

−1 0 0 1

 .
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Recall that all the algebraic circle fits invariant under translations must have a
constraint matrix given by (5.40), and the above matrix (8.18) is not of that
type. Thus the SWFL Riemann fit is not invariant under translations. Note, on
the other hand, that it is invariant under rotations, as the matrix N is of the
form (5.41). At the same time, the SWFL Riemann fit is not invariant under
similarities; see also Section 5.7.

In other words, the circle returned by the SWFL Riemann fit depends on the
choice of the origin (pole) of the complex plane and on the unit of length. The
non-invariance is clearly a disadvantage of the fit.

Generally, this fit is similar to the Gander-Golub-Strebel (GGS) fit and the
Nievergelt fit mentioned in Section 5.8, which just use an arbitrarily chosen
constraint matrix regardless of statistical efficiency. None of these three fits is
invariant under translations or similarities. The statistical analysis of such fits,
along the lines of Chapter 7, is impossible as they are not well defined – the
returned circle depends on the choice of the coordinate system and on the unit
of length.

Enforcing invariance. There is a standard trick enforcing the invariance
of a fit under translation – a prior centering of the data set, as mentioned in
Section 5.8. This means, precisely, placing the origin of the coordinate system at
the centroid (x̄, ȳ). This trick guarantees that x̄ = ȳ = 0. Many authors (see e.g.
[53, 176]) claim that centering the data prior to the fit helps reduce round-off
errors.

A similar trick can be applied to enforce invariance under similarities. As-
suming that the origin is already placed at the centroid, one simply needs to
choose the unit of length so that z̄ = b2, where b2 is a preselected constant. More
precisely, given b > 0, one scales the data by the rule

(xi, yi) 7→ (cxi, cyi), c =
b√

1
n

[∑
x2

i +
∑

y2
i

] .

While any choice of b guarantees invariance under similarities, in practice one
can adjust b empirically, depending on the type of data. We found that b = 0.5
works quite well in most cases, see the last section in this chapter.

Proper Riemann fit. On the other hand, the SWFL Riemann fit can be
reorganized if one corrects a little mistake inadvertently made by its authors in
[175]. Indeed, the denominator α2 + β2 − 4c(γ + c) in the formula (8.10) is
independent of the data points, but it depends on the parameters, hence it is
improper to discard it.
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Now let us keep the denominator and again change variables according to
(8.14). This gives us the objective function

(8.19) FRiemann(A, B, C,D) =
n∑

i=1

[Azi + Bxi + Cyi + D]2

B2 + C2 − 4AD
.

Equivalently, one can minimize

F(A, B, C,D) =
n∑

i=1

[Azi + Bxi + Cyi + D]2

subject to the constraint
B2 + C2 − 4AD = 1.

Perhaps, this should be called the proper Riemann fit .
However, a closer look reveals that it is nothing but our familiar Pratt fit, see

Section 5.5. Thus the proper version of the Riemann fit is just identical to the
Pratt fit. It is one of the best circle fits, it is invariant under translations and
rotations, and it has good statistical properties, in particular small bias. We have
reported its properties in our extensive error analysis in Chapter 7 and numerous
simulated experiments there and in Chapter 5. Everything we have said about
the Pratt fit applies to the proper Riemann fit as well.

8.5. Inversion-based fits

In this and the next sections we describe some more specialized circle fitting
schemes based on conformal mappings in the complex plane.

Inversion. The transformation of the complex plane that takes z = x+ iy to

I(z) =
1

z
=

x− iy

x2 + y2

is called inversion. One can define it on the extended complex plane C̄ by setting
I(0) = ∞ and I(∞) = 0. It is a one-to-one map of C̄ onto itself (a bijection),
which is continuous in both directions (a homeomorphism). It coincides with its
inverse, i.e. I−1 = I.

In the xy coordinates, the map I is computed by

x′ =
x

x2 + y2
, y′ = − y

x2 + y2
.

Since the negative sign before the second fraction is not essential for our purpose
of fitting circles, many researchers just drop it and use the slightly simplified rules

(8.20) x′ =
x

x2 + y2
, y′ =

y

x2 + y2
.

From now on we will call this map the inversion I. It has all the properties of
the actual inversion mentioned above.
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The map I has many remarkable properties summarized next.

Theorem 8.3. The map I is conformal at every point (x, y), except the origin
(0, 0). This means that its derivative DI (the linear part of I) preserves angles
between tangent vectors and it expands (or contracts) all tangent vectors uni-
formly. Precisely, if (dx, dy) is a tangent vector at (x, y) 6= (0, 0), then its image
(dx′, dy′) = DI(dx, dy) has length

‖(dx′, dy′)‖ = (x2 + y2)−1‖(dx, dy)‖.
Note that the factor (x2 + y2)−1 does not depend on the direction of the tangent
vector (dx, dy).

We have seen conformal maps in Section 8.3. This theorem can be verified
directly, by computing the matrix DI of partial derivatives of the formulas (8.20)
with respect to x and y, we leave this exercise to the reader.

Theorem 8.4. The map I transforms every line into a line or a circle. It
transforms every circle into a line or a circle. In particular, every circle passing
through the origin (0, 0) is transformed into a line not passing through the origin
(0, 0).

This theorem is illustrated in Figure 8.2.

O

L L

O

1

1

2

2

Figure 8.2. Inversion map I transforms the circle O1 into the
line L1 and the circle O2 into the line L2 The dashed circle is the
unit circle x2 + y2 = 1.

Inversion-based circle fit. The key fact in the last theorem is that I
transforms some circles (precisely, those passing through the origin) to lines and
back.

Now suppose one looks for a circle passing through the origin. Then the above
theorem suggests the following fit:

Step 1. Map the data points (xi, yi) into (x′i, y
′
i) by formulas (8.20).

Step 2. Fit a line to the points (x′i, y
′
i).
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Step 3. Transform the line obtained at Step 2 into a circle passing through the
origin by the map I (recall that I−1 = I).

This procedure was originally proposed by Brandon and Cowley [25] in 1983,
but they only described it in vague terms. An explicit description was published
by Rusu, Tico, Kuosmanen, and Delp in [159], and we present it here.

The authors of [159] propose to fit a line at Step 2 by the orthogonal least
squares, i.e. employ the geometric fit. It was thoroughly described in Chapter 1
and Chapter 2, so we need not repeat details here.

Lastly, Step 3 is a straightforward exercise in elementary geometry. Suppose
the line obtained at Step 2 is given by equation

(8.21) αx′ + βy′ + c = 0.

Then the parameters (a, b, R) of the circle fitting the original data set is computed
by

a = − α

2c
, b = − β

2c
, R2 = a2 + b2.

These formulas are derived in [159], we leave it to the reader to verify the details.

Limitation and generalization. An obvious limitation of the above fit is
that it can only produce circles passing through the origin (0, 0).

It can be used in a more general situation when one looks for a circle passing
through a certain point (x0, y0). In that case one simply translates the coordinate
system to the point (x0, y0), i.e. replaces the data points (xi, yi) with (xi−x0, yi−
y0). Then one applies the above fit, finds a circle with center (a, b) and radius
R passing through the (new) origin, and lastly translates the coordinate system
back, i.e. replaces (a, b) with (a + x0, b + y0).

To summarize, the inversion-based fit works whenever a point is known on
the desired circle. Then one uses that point as the pole of the inversion transfor-
mation. The big question is how to find such a point.

The choice of a pole. Assuming that all the data points are close to the
desired circle, one can use any one of them as the pole, i.e. select i = 1, . . . , n
and set (x0, y0) = (xi, yi). In most cases this would be a good approximation to
a point lying on the desired circle. Such approximations are employed in some
realizations [159]. Then one can find a better point on the desired circle by using
an iterative scheme; see Section 8.7.

Choosing one of the data points as a pole has its drawbacks. First, that point
will be transformed by the inversion to ∞, thus its image cannot be used at
Step 2, i.e. the sample is effectively reduced. Moreover, nearby data points will
be mapped far away from the origin, their new coordinates (x′, y′) may be very
inaccurate (to the extent that they may cause more trouble than good).
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In fact, a more stable version of the fit (described in Section 8.6) requires
assigning weights to data points and applying a weighted least squares fit at
Step 2. The weights must be very small (close to zero) for points near the pole,
hence their influence on the fitting circle is strongly suppressed. This effectively
reduces the sample size even further.

Beam

Vertex

Tra
ck

Track

Track

Track

Figure 8.3. Tracks coming out of a vertex after a collision that
occurs on the beam line.

In some applications a point on the desired circle may be known from the
nature of the data. In high energy physics, experimenters commonly deal with
elementary particles created (born) in a collision of an energetic particle with a
target. The energetic (primary) particle moves in a beam driven by magnetic
fields in an accelerator; the new (secondary) particles move along circular arcs
(called tracks) emanating from the point of collision (called the vertex ); see a
typical picture in Figure 8.3. The location of the vertex is often known very
precisely, then one can fit circular arcs to individual tracks using the coordinates
of the vertex.

A modification of the inversion-based fit. In some high energy physics
experiments the tracks do not exactly pass through the known vertex, and their
deviation from the vertex is an important parameter ε, called the impact of the
track.

The following modification of the inversion-based fit is proposed in 1988 by
Hansroul, Jeremie, and Savard [82] to account for the impact parameter. Let
(a, b, R) denote, as usual, the center and radius of the circle (track) and

δ = R2 − a2 − b2

be small, |δ| � R2, which guarantees that the circle passes close to the origin
(the vertex is at the origin). Assume that the track is rotated so that it is almost
parallel to the x axis. Then the inversion (8.20) maps the circle (a, b, R) to
another, bigger circle, and the images (x′i, y

′
i) of the data points are located along

a nearly horizontal arc of that bigger circle. The authors of [82] approximate
that arc by a parabola

y′ = α + βx′ + γ[x′]2.
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Practically, they propose to fit a parabola to the points (x′i, y
′
i) by the classi-

cal regression techniques; this is a linear problem that has an exact and simple
solution. Then the track parameters can be computed by

a = − β

2α
, b =

1

2α
, ε = − γ

(1 + β2)3/2
, R = ε +

√
a2 + b2,

where ε is the impact parameter. Thus one determines all the track characteris-
tics.

Track

Track image

Figure 8.4. A track passing near the pole. Its image under the
inversion map is an arc that can be approximated by a parabola.

Conclusions. We see that the inversion-based fit, in its original form, is
useful only in rather special applications where one knows a point that lies on
the desired circle or very close to it. However, such applications are rare; in most
cases one does not have the luxury of knowing a point near the desired circle.
In the next sections we present inversion-based circle fits that can handle more
general situations.

8.6. The RTKD inversion-based fit

In 2003, an interesting inversion-based circle fit was developed by Rusu, Tico,
Kuosmanen, and Delp [159]. First, it is a fairly accurate procedure because it
properly accounts for the distance change under the inversion map. Secondly, it
can work iteratively without a prior knowledge of a point on the desired circle
(this will be presented in the next section).

Relation between distances. First, the authors of [159] introduced proper
weights to stabilize the inversion-based fit and achieve a good accuracy. Their
analysis is actually similar to the one presented in Section 8.3 for the Riemann
fit.
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Let P and Q be two nearby points on the xy plane and d = dist(P, Q).
Denote by d′ the distance between their images I(P ) and I(Q). According to
Theorem 8.3,

d′ = (x2 + y2)−1d +O(d2)

where (x, y) are the coordinates of P (or Q). Furthermore, if a point P = (x, y)
is the distance d from a circle O passing through the pole, then its image I(P )
is the distance

(8.22) d′ = (x2 + y2)−1d +O(d2)

from the line L = I(O). If the line L is given by equation αx′+βy′+ c = 0, then
we can solve (8.22) for d and get

(8.23) d =

∣∣(αx′ + βy′ + c)(x2 + y2)
∣∣[

α2 + β2
]1/2

+O(d2).

Thus, if one wants to minimize distances di from the original points (xi, yi) to
the fitting circle, then one should minimize

(8.24) FRTKD(α, β, c) =
n∑

i=1

(x2
i + y2

i )
2(αx′i + βy′i + c)2

α2 + β2
,

which would be accurate to the first order. We call this procedure the Rusu-
Tico-Kuosmanen-Delp inversion-based fit, by the names of the authors of [159],
and abbreviate it by RTKD.

We call the above method the RTKD inversion-based fit . This is perhaps
the most accurate variant of the inversion-based fit.

This method is similar to the gradient-weighted algebraic fit (GRAF) de-
scribed in Section 6.5; it is also similar to the proper Riemann fit of Section 8.4,
which minimizes (8.19). All these fits are based on the first order approximation
to the geometric distances from data points to the fitting curve, which provides
the best accuracy possible for non-iterative (algebraic) fits.

The RTKD inversion-based fit. The numerical implementation of the
RTKD fit is quite straightforward. One precomputes the weights

(8.25) wi = (x2
i + y2

i )
2

and then solves the linear weighted least squares problem by minimizing

(8.26) FRTKD(α, β, c) =
n∑

i=1

wi(αx′i + βy′i + c)2

subject to the constraint α2 +β2 = 1. The solution (α, β) minimizing (8.26) must
be the eigenvector of the 2 × 2 weighted scatter matrix Sw corresponding to its
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smallest eigenvalue. The weighted scatter matrix Sw is defined by

(8.27) Sw =
1∑
wi

n∑
i=1

wi(ri − r̄)(ri − r̄)T ,

where ri = (x′i, y
′
i)

T is the ith ‘data vector’ and r̄ =
(∑

wiri

)
/
(∑

wi

)
; compare

this to (1.7). Note that the factor 1/
(∑

wi

)
in (8.27) is irrelevant and can be

dropped. The last parameter c is determined from the equation

α
∑

wix
′
i + β

∑
wiy

′
i + c

∑
wi = 0.

This concludes our description of the RTKD circle fit.
We remark that the authors of [159] implement the above procedure slightly

differently. They describe the line by equation y′ = a+ bx′, instead of our (8.21),
and then propose to compute a and b by the classical formulas (1.14)–(1.16) (with
extra weights). This approach, however, excludes vertical lines and becomes
numerically unstable when the line is close to vertical. The above eigenvalue
method, using standard matrix software, ensures numerical stability and handles
all lines without exception.

Analysis of the RTKD inversion-based fit. The authors of [159] do not
provide a statistical analysis of their fit. We just indicate its relation to another
fit here.

First we use (8.20) to express the objective function (8.24) in the original
coordinates (xi, yi):

FRTKD(α, β, c) =
n∑

i=1

[
αxi + βyi + c(x2

i + y2
i )

]2

α2 + β2
.

Second we use our old notation zi = x2
i + y2

i and change parameters as

A = c, B = α, C = β,

which gives us the objective function

(8.28) FRTKD(A, B, C) =
n∑

i=1

[
Azi + Bxi + Cyi

]2

B2 + C2
.

Comparing this to (8.19) we see that the RTKD inversion fit is obtained from the
proper Riemann fit (which is identical to the Pratt fit) by setting D = 0. The
constraint D = 0 simply forces the fitting circle to pass through the origin. Thus,
the RTKD inversion fit is nothing but a constrained version of the classical Pratt
fit, when the latter is reduced to circles passing through the origin.
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8.7. The iterative RTKD fit

Here we describe an iterative procedure developed by Rusu, Tico, Kuosmanen,
and Delp [159] that is based on their inversion method introduced in the previous
section, but is capable of fitting circles without a prior knowledge of a point on
the circumference.

First we observe that the weights wi = (x2
i + y2

i )
2 for the RTKD fit, cf.

(8.25), are small for data points close to the origin (the pole); moreover, they
vanish at the pole (0, 0). This means that the influence of data points near the
pole is severely suppressed. If there are several such points, then the sample
size is effectively reduced, leading to an undesirable loss of information. This
observation prompts the following considerations.

Position of the pole. The authors of [159] examined how the accuracy of
the fit depends on the location of the pole on the circle.

Of course if the data points are samples from the entire circle uniformly, then
any location is as good as another. So suppose the data points are sampled from
a small arc C of the true circle. Then the experiments reported in [159] show
that

• If the pole is placed on the arc C (i.e. close to the data points), then the
accuracy of the inversion fit is low.

• If the pole is placed outside the arc C (i.e. far from the data points),
then the accuracy of the inversion fit is good.

• If the pole is placed diametrically opposite to the arc C (i.e. the farthest
from the data points), then the accuracy of the inversion fit is the best.

B
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o
d

Good

Good

Figure 8.5. Possible locations for the pole on the circle. The
observed points (marked by crosses) are clustered on the right.

Figure 8.5 illustrates these conclusions; we refer to [159] for a more detailed
account on their experimental results.
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Iterative scheme. To avoid unfortunate locations of the pole close to the
data points, the authors of [159] propose the following iterative scheme.

Step 1. Set k = 0. Suppose an initial pole P0 is chosen.

Step 2. Apply the RTKD inversion fit (Section 8.6) with the pole Pk, obtain a
circle Ok.

Step 3. Place the new pole Pk+1 at point on the circle Ok diametrically opposite
to Pk (recall that Pk ∈ Ok by the nature of the fit).

Step 4. If dist(Pk+1, Pk−1) is small enough, stop. Otherwise increment k and
return to Step 2.

The underlying idea is that if the initial pole happens to be in a bad part of
the circle (close to the data points), then the next location will be in a very good
part of it (diametrically opposite to the data points), and then the locations will
alternate between bad and very good; the latter will stabilize the fit. If the initial
pole is in a good part of the circle, then its locations will remain in good parts.

Relaxing the constraint. Next, Rusu, Tico, Kuosmanen, and Delp [159]
realized that their RTKD iterative scheme can be applied without a prior knowl-
edge of a point on the circumference.

Indeed, suppose the initial pole P0 at Step 1 is chosen away from the circle.
Then the procedure will change the pole at every step, and the poles may get
closer and closer to the circle. Thus the procedure may converge to a limit where
pole will be on circle.

Practically, the authors of [159] place the initial pole at one of the observed
points, which is a very reasonable strategy (Section 8.5). In their numerical tests,
the iterative procedure always converged to a circle that was quite close to the
one returned by the geometric fit. The number of iterations was between 5 and
15 in all reported cases.

We call this algorithm the iterative RTKD fit .

The authors of [159] also investigated the sensitivity of their iterative scheme
to the choice of the initial pole in general, when the latter is selected anywhere
in the plane. They discovered that when the pole was chosen inside the true
circle or relatively close to it, then the scheme almost certainly converged. If the
pole is selected far from the true circle, the picture is mixed. The authors of
[159] found large areas in the plane from which the procedure converged, but
also nearly equally large areas from which it diverged. Roughly speaking, if a
pole is selected randomly from a very big disk around the observed points, then
about 50-60% of the times the procedure converges, and about 40-50% it does
not. More details may be found in [159] .

Such a statistics of convergence, by the way, is not unusual. Recall that the
geometric fit, implemented by standard Gauss-Newton or Levenberg-Marquardt
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numerical schemes, also converges 50-60% of the times, if started from a point
randomly chosen in a very large area; we discovered (and rigorously proved!) this
fact in Chapter 3.

Analysis of the iterative RTKD fit. The authors of [159] do not inves-
tigate the convergence of their fit or its statistical properties. We do that here.

Recall that if the pole coincides with the origin (0, 0), then the RTKD inver-
sion fit minimizes the function (8.28), i.e.

FRTKD(A, B, C) =
n∑

i=1

[
Azi + Bxi + Cyi

]2

B2 + C2
.

If the pole is at an arbitrary point P = (p, q), then the RTKD inversion fit will
minimize the function

F(A, B, C) =
n∑

i=1

[
A

(
(xi − p)2 + (yi − q)2

)
+ B(xi − p) + C(yi − q)

]2

B2 + C2

=
n∑

i=1

[
Azi + (B − 2Ap)xi + (C − 2Aq)yi + A(p2 + q2)−Bp− Cq

]2

B2 + C2
.

Let us change parameters as follows:

(8.29) Ǎ = A, B̌ = B − 2Ap, Č = C − 2Aq, Ď = A(p2 + q2)−Bp− Cq.

Now the RTKD inversion fit minimizes the function

(8.30) F(Ǎ, B̌, Č, Ď) =
n∑

i=1

[
Ǎzi + B̌xi + Čyi + Ď

]2

B̌2 + Č2 − 4ǍĎ
,

the formula in the denominator follows from

B2 + C2 = B̌2 + Č2 + 4A
[
A(p2 + q2) + B̌p + Čq

]
= B̌2 + Č2 + 4Ǎ

[
−A(p2 + q2) + Bp + Cq

]
.

We see that the RTKD inversion fit with the pole at P = (p, q) minimizes the
objective function (8.30). The coordinates of the pole do not explicitly enter the
formula (8.30), but they impose a constraint on the parameters Ǎ, B̌, Č, Ď, which
is dictated by (8.29):

Ď = B̌p + Čq − Ǎ(p2 + q2).

This constraint precisely means that the circle must pass through the pole (p, q).
Now let Pk and Pk+1 be two successive poles obtained by the iterative RTKD

scheme. Recall that both Pk and Pk+1 belong to the circle Ok found by the RTKD
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inversion fit with the pole Pk. At the next step, the RTKD inversion fit with
pole Pk+1 find a new circle, Ok+1. Observe that

F(Ok+1) = min
O3Pk+1

F(O) ≤ F(Ok),

where F(O) denotes the value of the objective function (8.30) at parameters
corresponding to the circle O. We see that the function F monotonically decreases
at every step of the iterative scheme. This is a good feature. In a sense, it
guarantees convergence: the iterations simply cannot ‘wonder aimlessly’ or loop
periodically.

It is reasonable to assume that the RTKD iterative scheme should converge
to the global minimum of the function (8.30), i.e. it should find a circle for which
F takes its minimum value. Our experimental tests show that this is indeed the
case: the RTKD algorithm either converges to the global minimum of (8.30), or
diverges altogether. We have observed this in millions of simulated examples and
have not seen a single exception.

Recall that the objective function (8.30) is also minimized by the Pratt fit,
see (5.21), as well as by the proper Riemann fit, see (8.19); those fits always
(!) find the global minimum of F . Thus the iterative RTKD fit and the Pratt
fit and the proper Riemann fit are theoretically identical, hence everything we
have said about the Pratt fit in Chapter 5 and Chapter 7 applies to the iterative
RTKD fit as well. Practically, though, the Pratt fit is preferable because it is
fast, noniterative, and 100% reliable.

A real data example. We have tested the Rusu-Tico-Kuosmanen-Delp
(RTKD) circle fits on the real data example described in Section 5.12. As a pole,
we used the first data point in the set.

The original version (Section 8.6) returned a circle with

center = (5.2265, 24.7238), radius = 16.7916,

so it grossly overestimates the radius. The improved (iterative) version of the
RTKD fit returned a circle with

center = (7.3871, 22.6674), radius = 13.8146,

which is identical to that found by the Pratt fit (Section 5.12).

8.8. Karimäki fit

An interesting fitting scheme was developed in 1991 by Karimäki [106, 107]
for applications in high energy physics. His scheme is similar, in spirit, to
inversion-based fits by Brandon and Cowley [25] and Hansroul, Jeremie, and
Savard [82] discussed in Section 8.5. But instead of conformal maps, Karimäki
uses a trigonometric change of parameters.
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Karimäki’s parameters. Recall (Section 8.5) that in nuclear physics exper-
iments, one fits circular arcs to tracks of elementary particles; tracks commonly
have a large radius (i.e., a small curvature) and pass near a fixed region in the
detector (the vertex). If the origin of the coordinate system is close to the vertex,
then the tracks pass near the origin.

In these experiments, the traditional circle parameters (a, b, R) are not conve-
nient as they frequently take large values leading to numerical instability. In the
limit of straight line tracks (which are characteristic for particles with very high
energy), these parameters turn infinite and the computations fail. This problem
was discussed at length in Section 3.2.

Karimäki [106] proposes an alternative set of parameters defined geometri-
cally (by using trigonometric functions). He replaces the radius R with a signed
curvature ρ = ±R−1, see below, and the center (a, b) with two other parameters,
d and ϕ, illustrated in Figure 8.6. He calls d the distance of the closest approach
to the origin (i.e. the distance from (0, 0) to the circle), and ϕ the direction of
propagation at the point of closest approach.

Karimäki’s choice of signs for ρ and d is the following: ρ > 0 for tracks turning
clockwise and ρ < 0 for those turning counterclockwise (at the point closest to
the origin); the sign of d is determined from the equation

d = xd sin ϕ− yd cos ϕ,

where (xd, yd) is the point of the circle closest to the origin. Our Figure 8.6 shows
a configuration where both ρ and d are positive.

d
φ

O

Figure 8.6. Karimäki’s parameters d and φ.

The three parameters (ρ, d, φ) completely (and uniquely) describe the circular
arc. They are convenient in the high energy physics experiments, as they never
have to take dangerously large values, and they represent exactly the quantities
of practical interest.

Conversion formulas. We refer to the illustration in Figure 8.6, where
both ρ and d are positive (other cases are treated similarly). Observe that the
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line joining the origin with the nearest point on the arc also passes through the
circle’s center.

Now given (ρ, d, ϕ) one can compute the traditional parameters by R = 1/|ρ|
and

(8.31) a =
(
d + 1

ρ

)
sin ϕ and b = −

(
d + 1

ρ

)
cos ϕ.

Conversely, given (a, b, R) one can compute the new parameters by ρ = ±1/R
and by solving the following two equations for d and ϕ, respectively:(

d + 1
ρ

)2
= a2 + b2, tan ϕ = −a/b.

Karimäki’s objective function. To construct his objective function, Karimäki
approximates distances between data points (xi, yi) and the circle (a, b, R) follow-
ing an earlier work by Chernov and Ososkov [45]. Namely, he approximates the
geometric distance

εi =
√

(xi − a)2 + (yi − b)2 −R

by

εi ≈ εi = (2R)−1
[
(xi − a)2 + (yi − b)2 −R2

]
.

He calls this a ‘highly precise approximation’ [107]; we refer to Section 5.4 for
the motivation and related discussion.

Then Karimäki expresses the above approximate distance in terms of his circle
parameters (ρ, d, ϕ):

(8.32) εi = 1
2
ρri − (1 + ρd)ri sin(ϕ− θi) + 1

2
ρd2 + d,

where ri and θi are the polar coordinates of the ith data point, i.e.

xi = ri cos θi and yi = ri sin θi.

Next Karimäki rewrites (8.32) as

(8.33) εi = (1 + ρd)
(
κr2

i − ri sin(ϕ− θi) + µ
)
,

where

(8.34) κ =
ρ

2(1 + ρd)
and µ =

1 + 1
2
ρd

1 + ρd
d,

are shorthand notation. Now Karimäki arrives at the objective function

(8.35) F(ρ, d, ϕ) = (1 + ρd)2

n∑
i=1

(
κr2

i − ri sin(ϕ− θi) + µ
)2

.

This is, of course, the same objective function (5.16) used by Chernov and Os-
oskov [45], but expressed in terms of the new parameters ρ, d, ϕ.
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Karimäki further simplifies the objective function (8.35) by discarding the
factor (1 + ρd)2, so he actually minimizes

FKar(ρ, d, ϕ) =
n∑

i=1

(
κr2

i − ri sin(ϕ− θi) + µ
)2

=
n∑

i=1

(
ziκ− xi sin ϕ + yi cos ϕ + µ

)2
,(8.36)

where we use our standard notation zi = x2
i + y2

i .
Karimäki’s rational for dropping the factor (1 + ρd)2 from (8.35) is that in

high energy physics experiments

|d| � R = 1/|ρ|, hence 1 + ρd ≈ 1.

Furthermore, Karimäki argues that the factor (1+ρd)2 is almost constant, in the
sense that it varies slowly (as a function of ρ and d), while the function FKar in
(8.36) has a sharp minimum, thus the location of that minimum should not be
affected much by an extra slowly varying factor.

He supports his reasoning by experimental evidence: he shows that in typical
cases the parameters minimizing (8.36) also provide the minimum of (8.35), with
a relative error < 10−3; see [106]. In another paper [107] Karimäki describes
the range of parameter values for which his reduction of (8.35) to (8.36) remains
reasonably accurate.

We will return to this issue in Section 8.9.

Karimäki’s minimization scheme. The formula (8.36) suggests that κ
and µ can be treated as new parameters that will temporary replace ρ and d.
The minimization of (8.36) with respect to κ, µ, and ϕ turns out to be a rela-
tively simple problem that has an explicit closed form solution. It was found by
Karimäki [106], we present it next.

First, one differentiates (8.36) with respect to κ and µ and finds

1

2n

∂FKar

∂κ
= zz κ− xz sin ϕ + yz cos ϕ + z̄ µ = 0,

1

2n

∂FKar

∂µ
= z κ− x̄ sin ϕ + ȳ cos ϕ + µ = 0,

(8.37)

where we again employ our standard ‘sample mean’ notation

(8.38) x̄ =
1

n

∑
xi, xz =

1

n

∑
xizi, zz =

1

n

∑
z2

i ,
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etc. The equations (8.37) are linear in κ and µ, hence these two parameters can
be eliminated as follows:

κ =
Cxz sin ϕ− Cyz cos ϕ

Czz

µ = −z̄ κ + x̄ sin ϕ− ȳ cos ϕ.
(8.39)

Now one substitutes (8.39) into (8.36) and arrives at the minimization of a single-
variable function

FKar(ϕ) = (CzzCxx − C2
xz) sin2 ϕ + (CzzCyy − C2

yz) cos2 ϕ

− 2(CzzCxy − CxzCyz) sin ϕ cos ϕ.(8.40)

Here Czz, Cxy, etc. denote ‘sample covariances’:

Cxx = xx− x̄2, Cyy = yy − ȳ2,

Cxy = xy − x̄ ȳ, Cxz = xz − x̄ z̄,(8.41)

Cyz = yz − ȳ z̄, Czz = zz − z̄2.

By differentiating (8.40) one arrives at the following equation for ϕ:

(8.42) tan 2ϕ =
2(CzzCxy − CxzCyz)

Czz(Cxx − Cyy)− C2
xz + C2

yz

.

We note that this is an analogue of the classical Pearson formula (1.17).
After solving (8.42) for ϕ one computes κ and µ by (8.39). Next one recovers

ρ and d from (8.34):

(8.43) ρ =
2κ√

1− 4κµ
and d =

2µ

1 +
√

1− 4κµ
.

Lastly, if ρ 6= 0, then one can compute the radius of the fitting circle by R = 1/|ρ|
and its center (a, b) by (8.31). This completes the Karimäki fitting procedure.

We call it simply the Karimäki fit .

8.9. Analysis of Karimäki fit

Karimäki’s fit has been used in several high energy physics laboratories around
the world. Its fast code (in FORTRAN 77, optimized for speed) is included in
the CPC Program Library, Queen’s University of Belfast; see [107] . Due to its
popularity we devote this section to its analysis.

Algebraic description of the Karimäki fit. Karimäki employs a trigono-
metric change of parameters, but his scheme can be expressed, equivalently, in
pure algebraic terms. Indeed, we can rewrite his objective function (8.36) as

(8.44) FKar =
n∑

i=1

[Azi + Bxi + Cyi + D]2
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subject to the constraint

(8.45) B2 + C2 = 1.

This places his fit in the context of algebraic circle fits discussed in Chapter 5.
Recall that the objective function (8.44) is used by every algebraic circle fit, those
fits only differ by different constraints. The one given here by (8.45) is new, we
have not seen it yet.

The constraint of an algebraic circle fit can be written in the matrix form as
ATNA = 1, where A = (A, B, C,D)T , and the constraint (8.45) corresponds to
the matrix

(8.46) N =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 .

Recall that all the algebraic circle fits invariant under translations must have a
constraint matrix given by (5.40), and the above matrix (8.46) is not of that type.
Thus the Karimäki fit is not invariant under translations. Note, on the other
hand, that it is invariant under rotations, as the matrix N is of the form (5.41).
It is also invariant under similarities (see Section 5.7).

We also note that all the algebraic circle fits can be reduced to a generalized
eigenvalue problem:

(8.47) MA = ηNA,

see (7.63). In many cases this problem can be efficiently solved by standard
matrix algebra software (for example, by calling the ‘eig’ function in MATLAB),
but not in the present case. The trouble is that the matrix N in (8.46) is singular
(its rank is 2), hence standard matrix library functions may run into exceptions
and break down or become unstable.

To remove the singularity from the problem (8.47), one can eliminate two
variables and reduce it to a 2 × 2 nonsingular generalized eigenvalue problem.
It is most convenient to remove A and D, but then the resulting solution will
be practically identical to the original Karimäki’s formulas given in Section 8.8.
Thus the algebraic description of the Karimäki fit does not lead to any better
implementation.

Similarity with inversion-based fits. Karimäki’s fit, like all the algebraic
circle fits, is designed as an approximation to the geometric fit. But his fit is
a ‘double approximation’, as it employs two subsequent approximations to the
geometric distances.

First, Karimäki uses the formula (8.32) introduced by Chernov and Ososkov
[45] and later by Pratt [150] and Kanatani [96]; it works well when σ � R
and puts no restrictions on circles. If Karimäki’s approximations were limited
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to (8.32), then his fit would be mathematically equivalent to those by Chernov-
Ososkov (Section 5.4) and Pratt (Section 5.5).

But Karimäki further reduces (8.35) to (8.36), and this reduction is based on
his assumption |d| � R, which puts explicit restrictions on circles. It precisely
means that the circle passes close to the origin (compared to its size). This
assumption makes the Karimäki fit similar to the inversion-based circle fits.

Recall that the standard inversion-based fit (Section 8.5) assumes that the
circle passes right through the origin. A modification by Hansroul, Jeremie,
and Savard [82] works also when the circle passes near the origin; see Section 8.5.
Thus all these fits (including Karimäki’s) are restricted to the same rather special
type of applications. This type, however, is quite common in high energy physics
(and it is hardly a coincidence that all these fits have been developed by nuclear
physics experimenters).

Correction formulas. Karimäki recognizes that the removal of the factor
(1 + ρd)2 from the objective function (8.35) affects the location of its minimum,
i.e. the minimum of the new function (8.36) found by his algorithm is only an
approximation to the minimum of the more appropriate function (8.35).

Karimäki proposes to ‘correct’ his estimates of ρ, d, ϕ by making a Newton’s
step toward the true minimum of (8.35). Precisely, he increments his estimates
by

∆ρ = −n
2
(dVρρ + ρVρd)K,

∆d = −n
2
(dVdρ + ρVdd)K,(8.48)

∆ϕ = −n
2
(dVϕρ + ρVϕd)K,

where

K = 2(1 + ρd)(xx sin2 ϕ− 2xy sin ϕ cos ϕ + yy cos2 ϕ)

− ρ(xz sin ϕ− yz cos ϕ)− d(2 + ρd)(x̄ sin ϕ− ȳ cos ϕ),

and Vρρ, Vρd, . . . are the components of the matrix V = H−1, where H is the 3×3
Hessian matrix consisting of the second order partial derivatives of the objective
function (8.35) evaluated at its minimum. We refer to [106] for explicit formulas
of the components of H.

Karimäki remarks [106] that the computation of the Hessian matrix H and its
inverse V is a part of the standard ‘error estimation’ procedure (i.e. the evaluation
of the covariance matrix of the estimates), so his corrections (8.48) would come
as an additional benefit at almost no extra cost.

Karimäki’s assumption revisited. Karimäki designed his fit under a seem-
ingly restrictive assumption, |d| � R, but in fact his fit works well under a less
restrictive condition:

(8.49) 1 + ρd should not be close to 0.
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Indeed, let us expand the objective function (8.35) into Taylor series

(8.50) F(Θ) = a1 + DT
1 (Θ− Θ̂) + 1

2
(Θ− Θ̂)TH1(Θ− Θ̂) + · · ·

where higher order terms are omitted; here Θ denotes the vector of parameters,
D1 is the gradient and H1 the Hessian of F . Suppose that the expansion is made
at the point Θ̂ where (8.35) takes its minimum, then D1 = 0. Note that Θ̂ is in
fact Pratt’s estimate of the circle parameters (see Section 5.5).

Karimäki’s objective function (8.36) can be written as FKar = gF , where
g = (1 + ρd)−2. Let us expand the extra factor g into Taylor series, too:

g(Θ) = a2 + DT
2 (Θ− Θ̂) + 1

2
(Θ− Θ̂)TH2(Θ− Θ̂) + · · ·

Multiplying the above expansions gives Karimäki’s objective function (8.36):

FKar(Θ) = a1a2 + a1D
T
2 (Θ− Θ̂) + 1

2
(Θ− Θ̂)T (a1H2 + a2H1)(Θ− Θ̂) + · · ·

The minimum of FKar is taken at

Θ̂Kar = Θ̂− a1(a1H2 + a2H1)
−1D2 + · · ·

where higher order terms are omitted. Let us examine how the minimum Θ̂Kar

differs from the minimum Θ̂ of the function F given by (8.50).
As usual, suppose the noise is Gaussian at a level σ � R; then the observed

points are at distance O(σ) from the best fitting circle. Then F = O(σ2) at its

minimum, hence a1 = O(σ2). Now the difference between the two minima Θ̂Kar

and Θ̂ will be of order σ2 provided the vector (a1H2 + a2H1)
−1D2 is not too

large, i.e. if its magnitude is of order one. This vector depends on several factors
which are hard to trace completely, but it appears that indeed its magnitude is
of order one provided g(Θ̂) = a2 is not too large, i.e. 1 + ρd is not too close to
zero, i.e. we arrive at the mild condition (8.49).

Recall that the statistical error of the estimate Θ̂ (i.e., its standard deviation)
is of order σ, hence an additional error of order σ2 would be indeed relatively
small. In particular, both fits will have the same covariance matrix, to the leading
order. We have seen in Chapter 7 that indeed all the algebraic circle fits have the
same covariance matrix. Moreover, the corrections (8.48) may reduce it further,
perhaps down to O(σ3). This is, of course, a conjecture to be verified. If this is

true, i.e. if Θ̂Kar − Θ̂ = O(σ3), then Karimäki’s estimator Θ̂Kar would not only
have the same covariance matrix as other algebraic fits (Chapter 7), but also the
same essential bias as the Pratt fit.

Our numerical tests support this hypothesis. We observed that the mean
squared error of the Karimäki fit is usually larger than that of the Pratt fit, but
after the corrections (8.48) are applied, the mean squared error becomes nearly
equal to that of the Pratt fit.
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We recall that the Pratt fit is one of the best circle fits, though its statistical
accuracy is slightly lower than that of the Taubin fit or the geometric fit or the
‘Hyperaccurate’ fit (see a detailed analysis in Chapter 7).

Possible extensions. There are several ways to relax even the mild restric-
tion (8.49). They are not discussed in Karimäki’s papers [106, 107], but we
include them here in an attempt to extend the applicability of his fit.

First, if all the observed points are close to the circle (i.e., σ � R), one can
choose any of them as the origin. In other words, one can choose 1 ≤ j ≤ n and
then transform (xi, yi) 7→ (xi − xj, yi − yj) for all i = 1, . . . , n. This places the
origin at the jth observed point. In most cases such a shift would guarantee the
validity Karimäki’s main assumption (8.49). Furthermore, such a choice of the
coordinate system does not reduce the size of the sample, as it did in the case of
inversion-based fits, see Section 8.5. Even the jth point itself, where the origin
is placed, effectively participates in the fitting procedure.

Next, one can apply an iterative scheme analogous to that of Rusu, Tico,
Kuosmanen, and Delp [159]; see Section 8.6. Namely, one can adjust the origin
(‘pole’) P = (0, 0) at every iteration. Precisely, suppose for the current origin Pk

(where k is the iteration number) the Karimäki fit returns a circle Ok. Then one
can set the next origin (pole) Pk+1 at the point on Ok closest to Pk; then one
refits the circle Ok+1, etc.

This iterative scheme may converge much faster than the RTKD algorithm of
Section 8.6, because Karimäki’s circle is more flexible, it is not rigidly constrained
to pass through the current pole. On the other hand, repeating the Karimäki fit
iteratively would instantly deprive it of its best asset—fast performance—as its
computational time would double or triple.

A real data example. We have tested the Karimäki circle fits on the real
data example described in Section 5.12. As a pole, we used the first data point
in the set.

The original Karimäki fit (Section 8.8) returned a circle with

center = (7.4408, 22.6155), radius = 13.7401,

so it underestimates the radius. The corrected version described in this section
returned a circle with

center = (7.3909, 22.6636), radius = 13.8092,

which is closer to the ideal circle (5.71) but still slightly worse than circles found
by simpler and faster algebraic fits (Section 5.12).

8.10. Numerical tests and conclusions

We have tested all the algorithms described in this chapter in a set of nu-
merical experiments with simulated data. Our goal was to ‘try them on’ under
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n = 20 data points
360o 180o 90o 45o

(σ = 0.05) (σ = 0.01)

Riemann fit (the SWFL version) 6.439 19.32 9.970 166.7

Inversion-based fit (before iterations) 18.42 52.33 27.95 661.3

Inversion-based fit (after iterations) 6.549 19.56 9.990 169.0

Karimäki fit (before correction) 6.601 20.16 10.01 169.3

Karimäki fit (after correction) 6.548 19.55 9.991 169.0

Pratt fit 6.549 19.56 9.990 169.0

Taubin fit 6.397 19.42 9.990 169.0

Hyper fit 6.344 19.38 9.990 169.0

Geometric fit 6.317 19.29 9.991 169.3

Table 8.1. Mean squared error for several circle fits (104×values
are shown). In this test n = 20 points are placed (equally spaced)
along an arc of specified size of a circle of radius R = 1. For arcs
of 360o and 180o, the noise level is σ = 0.05. For arcs of 90o and
45o, the noise level is σ = 0.01.

various conditions and compare them to the geometric and algebraic circle fits
described in the previous chapters.

Numerical tests. First, we generated N = 107 random samples of n = 20
points located (equally spaced) on the entire unit circle x2+y2 = 1 and corrupted
by Gaussian noise at level σ = 0.05. For each circle fit we have empirically
determined the mean squared error of the parameter vector, i.e.

MSE =
1

N

N∑
i=1

[
(âi − a)2 + (b̂i − b)2 + (R̂i −R)2

]
,

where âi, b̂i, R̂i denote the estimates of the circle parameters computed from the
ith sample, and a = b = 0, R = 1 are their true values. The resulting MSE’s are
given in the first column of Table 8.1.

We note that the inversion-based fit and Karimäki fit require a pole (i.e., a
point presumably lying on the circle) to be supplied. We did not give them such
a luxury as a point on the true circle, but we used a randomly selected data point
as a pole (which is a standard strategy; see Section 8.5).
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The first column of Table 8.1 shows that the exotic circle fits described in
this chapter are generally less accurate than the standard geometric and alge-
braic fits. The plain RTKD inversion-based fit (the second line) is especially
poor; apparently, it heavily depends on the choice of the pole, and a randomly
selected data point is just not good enough. The subsequent iterations improve
the performance of the inversion-based fit, making it similar to that of the Pratt
fit.

The plain Karimäki fit is not very accurate either, but after the subsequent
corrective step it performs similarly to the Pratt fit. This fact confirms our
theoretical predictions that the iterative RTKD fit and the corrected Karimäki
fit would produce nothing but good approximations to the Pratt fit.

The SWFL Riemann fit was implemented with data centering and rescaling,
as described in Section 8.4, to enforce its invariance under translations and sim-
ilarities. These steps were added to the original version published in [175, 173],
as without such steps the performance of the Riemann fit was unreliable. Sur-
prisingly, with these additional steps, the Riemann fit becomes very stable, it
even slightly outperforms the Pratt fit! But the best fitting schemes are still our
‘old friends’ – Taubin, Hyper, and geometric fits.

Next we simulated more a difficult situation, where the n = 20 data points
were equally spaced on a semicircle (180o), see the second column of Table 8.1.
The picture has not changed much, except the SWFL Riemann fit now fares
even better – it performs nearly as good as the geometric fit, and better than the
Hyper fit.

Next we have simulated even more challenging data sets located on smaller
arcs, such as a quarter of the circle (90o), and 1/8 of the circle (45o), see the last
two columns of Table 8.1. Though in these cases we had to lower the Gaussian
noise to σ = 0.01, to avoid erratic behavior demonstrated by several fits (notably,
by the inversion-based RTKD fit). The picture remains the same, but the SWFL
Riemann fit now demonstrates the best performance of all – it beats all the other
fits in our test! We will address its phenomenal behavior below.

Secondly, we have repeated our experiment with the number of points in-
creased from n = 20 to n = 100; the results can be seen in Table 8.2. The overall
picture is similar to the one observed in Table 8.1, except on the smallest arc (45o)
the inversion-based RTKD fit has diverged all too frequently, making the MSE
evaluation impossible; this fact is marked by the ‘infinity’ in the corresponding
lines of the last column. Note also that the SWFL Riemann fit is no longer the
‘top performer’ for the 90o arc, it falls behind the algebraic and geometric fits.
On the other hand, the Riemann fit still is still ‘the winner’ for the smallest 45o

arc.
The unexpectedly strong performance of the SWFL fit in some cases is a

pleasant surprise. It would be tempting to investigate the accuracy of this fit
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n = 100 data points
360o 180o 90o 45o

(σ = 0.05) (σ = 0.01)

Riemann fit (the SWFL version) 1.382 4.529 2.328 37.12

Inversion-based fit (before iterations) 15.03 46.96 25.98 ∞

Inversion-based fit (after iterations) 1.505 4.639 2.320 ∞

Karimäki fit (before correction) 1.567 5.465 2.342 37.81

Karimäki fit (after correction) 1.503 4.634 2.320 37.39

Pratt fit 1.505 4.639 2.320 37.38

Taubin fit 1.326 4.468 2.320 37.38

Hyper fit 1.266 4.412 2.319 37.38

Geometric fit 1.270 4.387 2.319 37.38

Table 8.2. Mean squared error for several circle fits (104×values
are shown). In this test n = 100 points are placed (equally spaced)
along an arc of specified size of a circle of radius R = 1. For arcs
of 360o and 180o, the noise level is σ = 0.05. For arcs of 90o and
45o, the noise level is σ = 0.01.

theoretically, as we did in Chapter 7. Unfortunately, this task appears prohib-
itively difficult, as our version of this fit involves the centering and rescaling of
the data described in Section 8.4 (recall that these steps were added for the
sake of invariance under translations and similarities). It can be easily seen that
these steps bring serious non-linearities to the mathematical formulas, and we
are currently unable to handle such complications in our theoretical analysis.

Final conclusions. In this last chapter, we have seen various sophisti-
cated mathematical tools (conformal maps, stereographic projection, trigono-
metric change of parameters) applied to the circle fitting problem, in an attempt
to simplify the original objective function (4.18), decouple its variables, and pro-
duce a fast and reliable minimization scheme. These attempts do achieve some
success, they provide acceptable fits under certain conditions, especially when
additional information is available (e.g., a point on the fitting circle is given).

But a detailed analysis shows that most of the resulting fits turn out to be
just approximations to the algebraic circle fit proposed by Pratt (Section 5.5).
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Actually one of the new fits—the proper Riemann fit (see Section 8.4)—is iden-
tical to the Pratt fit, while the RTKD inversion-based fit and the Karimäki fit
only approximate it (to various degrees).

A special note must be made on the ‘improper’ SWFL Riemann fit. Its original
version published in [175, 173] is not invariant under translations and similari-
ties, thus it is unreliable. To remedy the situation, we have added two steps to
the procedure—centering and rescaling of the data points (see Section 8.4)—to
enforce invariance. With these additional steps, the fit turns out to be fairly
robust and occasionally beats all the other fits in our studies. Its remarkable
performance remains to be investigated theoretically... In any case, it serves as
a good evidence that mathematically sophisticated fits described in this chapter
have great potential and perhaps should be developed further.
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[80] R. Halǐr and J. Flusser. Numerically stable direct least squares fitting of ellipses. In Sixth
Conf. Cent. Europe Comput. Graph. Vis., WSCG’98, Conf. Proc., volume 1, pages 125–
132, Plzen, Czech Rep., 1998. (document), 3.1
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[171] H. Späth. Orthogonal least squares fitting by conic sections. In Recent Advances in Total

Least Squares techniques and Errors-in-Variables Modeling, pages 259–264. SIAM, 1997.
4.8, 4.8



BIBLIOGRAPHY 251

[172] T. Steihaug. Conjugate gradient method and trust regions in large scale optimization.
SIAM J. Numer. Anal., 20:626–637, 1983. 4.4
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