DeepSOCIAL: Social Distancing Monitoring and Infection Risk Assessment in COVID-19 Pandemic [post]

Mahdi Rezaei, Mohsen Azarmi
2020 unpublished
Social distancing is a recommended solution by the World Health Organisation (WHO) to minimise the spread of COVID-19 in public places. The majority of governments and national health authorities have set the 2-meter physical distancing as a mandatory safety measure in shopping centres, schools and other covered areas. In this research, we develop a generic Deep Neural Network-Based model for automated people detection, tracking, and inter-people distances estimation in the crowd, using common
more » ... rowd, using common CCTV security cameras. The proposed model includes a YOLOv4-based framework and inverse perspective mapping for accurate people detection and social distancing monitoring in challenging conditions, including people occlusion, partial visibility, and lighting variations. We also provide an online risk assessment scheme by statistical analysis of the Spatio-temporal data from the moving trajectories and the rate of social distancing violations. We identify high-risk zones with the highest possibility of virus spread and infection. This may help authorities to redesign the layout of a public place or to take precaution actions to mitigate high-risk zones. The efficiency of the proposed methodology is evaluated on the Oxford Town Centre dataset, with superior performance in terms of accuracy and speed compared to three state-of-the-art methods.
doi:10.21203/rs.3.rs-68650/v1 fatcat:hzauuwehzffvjdvalaxuc6rtxe