A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Short-Term Infectious Diarrhea Prediction Using Weather and Search Data in Xiamen, China
2020
Scientific Programming
Infectious diarrhea has high morbidity and mortality around the world. For this reason, diarrhea prediction has emerged as an important problem to prevent and control outbreaks. Numerous studies have built disease prediction models using large-scale data. However, these methods perform poorly on diarrhea data. To address this issue, this paper proposes a parsimonious model (PM), which takes historical outpatient visit counts, meteorological factors (MFs) and Baidu search indices (BSIs) as
doi:10.1155/2020/8814222
fatcat:e2q7ezcsk5h4zhfhvxxrwag7ym