Fast Recovery of Lead from Hydrochloric Acid via a Novel Silica-Supported Anion Exchange Resin for the Determination of 210Pb in Environmental Samples [post]

Lifeng Chen, Jie Zhang, Xianwen He, Manqing Liu, Qiuyang Wei, Xinpeng Wang, Yuezhou Wei
2020 unpublished
The<b> </b>measurement of <sup>210</sup>Pb is significant in environmental studies. Lead separation in HCl solution is a vital procedure but suffers from poor efficiency with high labor and time costs. To overcome this problem, a novel anion exchange resin was synthesized and characterized by different techniques followed by studies on the adsorption behaviors towards lead in HCl solution. The results suggest that SiPS-N(CH<sub>3</sub>)<sub>3</sub>Cl was successfully prepared with small
more » ... size, low water swelling rate, and large specific surface area. The maximum anion exchange capacity resulted from quaternary amine groups was determined to be 1.0 mmol (Cl<sup>-</sup>)/g.The adsorption activities reached equilibrium within 3 min under selected conditions offering extremely fast adsorption kinetics. The synergistic adsorption mechanism, the multilayer adsorption mechanism, and the competition from co-existing chloride anions were found to be responsible for the lead adsorption performance of SiPS-N(CH<sub>3</sub>)<sub>3</sub>Cl. Column experiments showed that the feeding volume of lead and HCl had impact on the chemical yield regardless of the co-existence of high concentrations of FeCl<sub>3</sub> (90 mM) and a high flow speed (4.0 mL/min). Based on these results, a separation process integrating SiPS-N(CH<sub>3</sub>)<sub>3</sub>Cl and the matched parameters was finally developed and tested. Our work greatly raised the lead separation efficiency in HCl solutions with implications for measuring <sup>210</sup>Pb in environmental samples.
doi:10.26434/chemrxiv.11907750.v1 fatcat:2hhzc6jfnjfapgk5hiqjgclola