A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Classes of codes from quadratic surfaces of PG(3,q)
2007
We examine classes of binary linear error correcting codes constructed from certain sets of lines defined relative to one of the two classical quadratic surfaces in $PG(3,q)$. We give an overview of some of the properties of the codes, providing proofs where the results are new. In particular, we use geometric techniques to find small weight codewords, and hence, bound the minimum distance.
doi:10.11575/cdm.v2i1.61875
fatcat:qemvmlwrpfcq7po4bvgu2w2464