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Exosomes are nanovesicles originating from late endosomal compartments and secreted by most living
cells in ex vivo cell culture conditions. The interest in exosomes was rekindled when B-cell and dendritic
cell-derived exosomes were shown to mediate MHC-dependent immune responses. Despite limited under-
standing of exosome biogenesis and physiological relevance, accumulating evidence points to their bioactivity
culminating in clinical applications in cancer. This review focuses on the preclinical studies exploiting the
immunogenicity of dendritic cell-derived exosomes (Dex) and will elaborate on the past and future vaccination
trials conducted using Dex strategy in melanoma and non-small cell lung cancer patients. Cancer Res; 70(4);

1281–5. ©2010 AACR.
Introduction

Exosomes were first described as vesicles secreted by reti-
culocytes allowing the elimination of obsolete molecules
such as transferrin receptors (1, 2). Intense research ensued
when B-cell-derived exosomes were shown to stimulate MHC
class II-dependent CD4+ T cells in vitro (3, 4). Since then,
many studies highlighted that dendritic cell (DC)-derived
exosomes (Dex) could modulate immune responses (4, 5),
either directly by exposing MHC and costimulatory mole-
cules or indirectly by conveying internal components to sur-
rounding cells (6). Importantly, exosomes seem to also
transfer nucleic acids such as mRNA and microRNA and
may represent a new mechanism of genetic exchange be-
tween cells (4, 7). Despite significant advances achieved in
delineating their protein (8) and lipid composition (9) and
their biogenesis (10), their physiopathological relevance re-
mains unclear. Two studies on placental exosomes indicated
that such vesicles exhibiting T-cell inhibitory potential
through various mechanisms (such as the role of FasL;
ref. 11; and ULBP molecules; ref. 12) may be associated with
term delivery during pregnancy (11). An elegant work point-
ed out that delivering antigens in vivo through small secreted
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vesicles such as exosomes is more immunogenic than the
mere delivery of its soluble form in tumor models (13). The
increasing knowledge about the biological effects of exo-
somes provides exciting prospects for exosome development
in therapy. Here, we will focus on Dex and their capacity to
induce immune responses in tumor-bearing hosts, on the
possibility of enhancing Dex bioactivity (“second generation”
Dex), and finally we will introduce our future phase II clinical
trial testing the clinical efficacy of second generation Dex.
Dex as Cell-free Vaccines for Cancer Treatment

In 1998, we showed in mouse models that Dex pulsed with
peptide acid eluted from a variety of different tumorsmediated
tumor growth retardation in an MHC- and CD8+ T-cell-
dependent manner (5). Since then, the mechanisms implicat-
ed in the bioactivity of Dex in vitro and in vivo were further
dissected. Indeed, most lines of experimental evidence con-
verge toward the demonstration of the indirect capacity of
exosomal MHC class I and II molecules to trigger CD8+ and
CD4+ T-cell activation. Dex can transfer functional peptide-
loaded MHC class I and II complexes to DCs in vitro (6, 14).
In vivo studies of exosome transfer indicated that Dex require
ex vivo generated (14) or host DC (15). We next analyzed the
molecular mechanisms involved in the transfer of exosomal
MHC molecules to host APC and the role played by the mat-
uration status of DC for the Dex-mediated immunogenicity
in vivo. The analysis of the Dex protein composition revealed
that Dex are enriched in a variety of proteins that could po-
tentially dock their membrane to that of host APC. Indeed,
exosomal milk fat globule-EGF factor VIII/MFG-E8 (theoreti-
cally binding to the integrins αvβ5 and αvβ3; refs. 8, 16, 17), as
well as Mac-1 α-chain (CD11b) and tetraspanins (CD9, CD63,
CD82, CD81), were tested for their potential role in the immu-
nogenicity of Dex (at least when mouse bone marrow-derived
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DC were used as recipients; ref. 18).8 These proteins did not
seem to be involved (19), whereas the interaction between
Dex and CD8α+ DC was shown to be mediated through
ICAM-1/LFA-1 molecules (20). Dex transfer onto DC did not
mediate DCmaturation in vitro (6).9 These data were indirect-
ly supported by two lines of evidence pointing out that Dex
secreted from immature DC (imDex) failed to induce potent
T-cell responses.
First, Dex produced by imDex express low level of mole-

cules implicated in direct T-cell activation or DC target-
ing such as CD40, CD80, CD86, and ICAM-1, respectively
(19–23). Secondly, imDex were poorly immunogenic in can-
cer-bearing mice and patients. In HHD2 mice, Dex loaded
with Mart-1 peptides required TLR9L adjuvants to mount
Mart-1-specific CD8+ T-cell activation leading to tumor re-
gression (15). In the first clinical trials using imDex as
cell-free vaccines in advanced melanoma (24) and lung can-
cer-bearing patients (25), we failed to detect vaccine-specific
T-cell responses while observing potent Dex-related NK cell
activation.
Hence, Dex not only mediate bioactivities on T lympho-

cytes but also modulate in the innate arm of immune re-
sponses. Although tumor-derived exosomes (Tex) could
inhibit NK cells through blockade of IL-2-mediated NK cell
activation leading to tumor escape (26) or through down
regulation of natural killer group 2 member D (NKG2D) on
peripheral blood lymphocytes leading to decreased T-cell cy-
totoxicity (27, 28), Dex can directly trigger NK cell activation
in mice and cancer patients. Indeed, we showed that Dex
secreted from bone marrow-derived or monocyte-derived
DC harbor functional membrane bound NKG2D ligands
and interleukin (IL)-15Rα. Importantly, the first phase I clin-
ical study revealed that Dex vaccines significantly augmented
circulating NK cell numbers and NKG2D-dependent func-
tions in the majority of melanoma patients (29).
Modulation of Dex Immunogenicity: Second
Generation Dex

Over the past 10 years, many groups have been interest-
ed in finding a way of using and improving exosomes as
immunological tools (Fig. 1A). Because DC represent a
promising cell-based strategy to elicit or enhance antitu-
mor immune responses, investigators started to think
about the pros and cons of Dex versus DC therapy. Dex
are unarguably stable vesicles harboring defined protein
and lipid contents that could be tailor-manufactured from
genetically modified and GMP-certified cell lines. Further-
more, on the basis of the two first feasibility trials, we gen-
erated about 10 vaccines of NK cell-stimulating Dex from
one leukapheresis in most individuals, suggesting that Dex
may at least complement DC-based therapies of cancer and
8 Théry C. Unpublished data.
9 Zitvogel L. Unpublished data.
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represent a valuable strategy to boost DC-mediated T- and
NK-cell responses. Therefore, the question arose of how to
influence Dex bioactivity.
Although the issues of dose and route were studied by

some investigators (15, 24, 25, 30), such considerations may
be best addressed in future trials aimed at monitoring Dex
bioactivity in humans.
In contrast, many studies aimed at changing the molec-

ular composition of exosomes were conducted in order to
influence their immune properties. Thus, between 2005 and
2007, Robbins and colleagues attempted to generate tolero-
geneic Dex using immature DC treated or transduced with
adenoviral vector encoding IL-10, IL-4, or FasL, which were
able to suppress inflammation in a murine model of de-
layed-type hypersensibility and reduce the severity of estab-
lished collagen-induced arthritis (31–35). Likewise, Dex
bearing donor-MHC antigens delayed chronic rejection
when transferred into a rat model of cardiac allograft
(36), and when produced by TGF-β1- and IL-10-treated
DC, Dex were efficient inducers of immune tolerance in a
murine skin transplantation model (37). More recently, Dex
secreted from DC overexpressing indoleamine 2,3-dioxygen-
ase (IDO) reduced inflammation in a model of rheumatoid
arthritis (32).
Likewise, Dex can be directly or indirectly (via DC) loaded

with desired immunogens to redirect and gear the immune
response. Aline and colleagues showed that mice immunized
with Dex loaded with Toxoplasma gondii antigen were pro-
tected against T. gondii chronic infection (38). Humoral re-
sponses directed against diphtheria toxin were induced by
DT-pulsed Dex in naïve mice (39). Dex produced by DC
pulsed with acid-eluted tumor peptides reduced tumor
growth in mice (5). The question of whether Dex is more po-
tent at raising CD4+ and/or CD8+ T-cell responses when
antigens are directly versus indirectly loaded onto exosomes
has been addressed by us and others. In an MHC class II-
dependent TCR transgenic T-cell model, Qazi and colleagues
showed that B- and T-cell responses can only be triggered
in vivo when Dex are indirectly loaded through DC pulsing
and concluded that in such conditions, Dex exert potent an-
tigen-specific Th1 responses in vivo (40). When comparing
the MHC class II-dependent immunogenicity of Dex secreted
from immature versus mature DC in skin transplantation
models, we established the superiority of LPS-matured DC-
derived exosomes, which was accounted for by their enrich-
ment in ICAM-1 and CD86 molecules (20). Our group has
implemented these results with human cells and generated
Dex from mature DC cultures. Such mDex offer advantages
compared with imDex. First, mDex exhibit increased expres-
sion of MHC II molecules, CD40, ICAM-1, IL-15Rα, and
NKG2D ligands. Second, mDex were indirectly loaded with
MHC class I and II peptide antigens through maturing
DC leading to potent T-cell triggering in the absence of
recipient DC.10
10 Chaput N. Unpublished data.
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Clinical Trial Using Second Generation Dex in
Non–Small Cell Lung Cancer Patients

A phase II clinical trial testing the clinical benefit of Dex as
maintenance immunotherapy in patients bearing inoperable
(stage IIIB to IV) non small cell lung cancer (NSCLC) re-
sponded to or stabilized after induction chemotherapy was
launched in November 2009 at the Gustave Roussy and Curie
Institutes (Fig. 1B). Dex will be purified from autologous ma-
turing MD-DC loaded with HLA-DP*04-restricted (MAGE-3)
and HLA-A*02-restricted peptides (NY-ESO-1, MAGE-1,
MAGE-3, MART-1). Patients will first receive four cycles of
platinum-based chemotherapy. Based on our preclinical
(41) and clinical data (42) showing that metronomic cyclo-
phosphamide (CTX) facilitates Dex-mediated T-cell priming
and restores T- and NK-cell functions in end stage patients,
HLA-A*02 responders will be eligible for the induction immu-
notherapy on the basis of the combination of a 3-week oral
therapy with low dose CTX (42) followed by four weekly in-
tradermal Dex injections. Continuation immunotherapy will
maintain Dex vaccines every 2 weeks for 6 weeks. Forty-one
patients will be enrolled between November 2009 and Octo-
www.aacrjournals.org
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ber 2011. The primary objective is to ameliorate the rate of
progression-free survival at 4 months postchemotherapy.
Secondary objectives are the clinical efficacy of Dex (assessed
as overall survival, objective response rates), the biomarkers
of efficacy (NK activation, restoration of NKG2D expression,
and peptide vaccine-specific T-cell responses), and the safe-
ty of mDex in this cohort.

Conclusion

Dex are very promising vaccines in various physiopatho-
logical contexts. It is now possible to manipulate the cells
from which Dex originate to modulate Dex bioactivity. Dex
are able to activate adaptive (6, 15, 40, 41) and innate immu-
nity (29). In addition, preclinical studies showed that peptide
vaccines have a higher antitumor efficacy when carried by
exosomes (15, 41). However, Dex are vesicles derived from
DCs and therefore, their production requires a clinical cell
therapy unit qualified for production according to good man-
ufacturing practices with skilled and experienced employees.
Moreover, DC differentiation involves growth factors and
maturation agents that make the process expensive. However,
Figure 1. Bioactivity of exosomes as a function of the maturation state of the secretory dendritic cell. A, different strategies for the production of Dex
with pro- or anti-inflammatory properties. B, schematic of the future maintenance immunotherapy clinical trial testing the clinical efficacy of second
generation Dex in patients bearing NSCLC. IM, immunomonitoring; w., week, i.d., intradermally. The references to the corresponding Dex-applications
(pro- or anti-inflammatory) are shown in brackets.
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Dex are produced in large quantities allowing several vaccines.
Finally, Dex are very stable and can be cryo-preserved more
than 6 months at −80°C with a phenotype and function pre-
served. This stability gives them an advantage over DCs. Re-
search and development of Dex is timely because phase III
trials show the clinical benefit of peptides and antigen-loaded
DC in melanoma and prostate cancer, respectively. Dex could
substitute or boost other strategies of immunotherapy or be
used as a maintenance vaccine. However, future prospects
should aim at designing and engineering synthetic exosomes
for broader therapeutic indications as has been recently pro-
posed (43).
Cancer Res; 70(4) February 15, 2010
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