In vivo diffusion tensor mapping of the brain of squirrel monkey, rat, and mouse using single-shot STEAM MRI

S. Boretius, O. Natt, T. Watanabe, R. Tammer, L. Ehrenreich, J. Frahm, T. Michaelis
2004 Magnetic Resonance Materials in Physics, Biology and Medicine  
The purpose was to assess the potential of half Fourier diffusion-weighted single-shot STEAM MRI for diffusion tensor mapping of animal brain in vivo. A STEAM sequence with image acquisition times of about 500 ms was implemented at 2.35 T using six gradient orientations and b values of 200, 700, and 1200 s mm −2 . The use of half Fourier phase-encoding increased the signal-to-noise ratio by 45% relative to full Fourier acquisitions. Moreover, STEAM-derived maps of the relative anisotropy and
more » ... n diffusion direction were completely free of susceptibility-induced signal losses and geometric distortions. Within measuring times of 3 h, the achieved resolution varied from 600×700×1000 µm 3 for squirrel monkeys to 140×280×720 µm 3 for mice. While in monkeys the accessible white matter fiber connections were comparable to those reported for humans, detectable fiber structures in mice focused on the corpus callosum, anterior commissure, and hippocampal fimbria. In conclusion diffusion-weighted single-shot STEAM MRI allows for in vivo diffusion tensor mapping of the brain of squirrel monkeys, rats, and mice without motion artifacts and susceptibility distortions.
doi:10.1007/s10334-004-0069-1 pmid:15580374 fatcat:rzirxx3bbfcu5oq3r35g7ty7dq