Effect of Soil Texture on Water Movement of Porous Ceramic Emitters: A Simulation Study

Yaohui Cai, Xiao Zhao, Pute Wu, Lin Zhang, Delan Zhu, Junying Chen
2018 Water  
Choosing reasonable design parameters for ceramic emitters used in subsurface irrigation is important for reducing the deep percolation of water and improving the water use efficiency. Laboratory experiments and numerical simulations with the HYDRUS-2D software were carried out to analyze the effect of soil texture on the infiltration characteristics of porous ceramic emitters used for subsurface irrigation. HYDRUS-2D predictions of emitter discharge in soil and wetting front are in agreement
more » ... th experimental results, and the HYDRUS-2D model can be used to accurately simulate soil water movement during subsurface irrigation with ceramic emitters in different soil textures. Results show that soil texture has a significant effect on emitter discharge, soil matrix potential around the emitter, and wetting front. For 12 different soil textures, the aspect ratio of the wetting front is basically between 0.84–1.49. In sandy soil, the wetting front mainly appears as an ellipse; but in the clay, the wetting front is closer to a circle. As irrigation time increases, emitter discharge gradually decreases to a stable value; however, emitter discharge in different texture soils is quite different. In order to improve the crop water use efficiency in sandy soil, soil water retention can be improved by adding a clay interlayer or adding water retention agent, reducing the risk of deep percolation and improving the water use efficiency.
doi:10.3390/w11010022 fatcat:ne6zinlxfzdonp6fdq6kttru24