SVM &Ga-clustering Based Feature Selection Approach for Breast Cancer Detection

Rashmi Priya, Syed Wajahat Abbas Rizvi
2020 International Journal on Soft Computing Artificial Intelligence and Applications  
Mortality leading among women in developed countries is breast cancer. Breast cancer is women's second most prominent cause of cancer mortality worldwide. In recent decades, women's high prevalence of breast cancer has risen dramatically. This paper discussed several data analysis methods used to detect breast cancer early. Breast cancer diagnosis distinguishes benign and malignant breast lumps. Using data processing tools, we tackled this disease analysis. Data mining is an important step of
more » ... brary discovery where intelligent methods are used to detect patterns. Several clinical breast cancer studies were conducted using soft computing and machine learning techniques. Sometimes their algorithms are easier, easier, or more comprehensive than others. This research is focused on genetic programming and machine learning algorithms to reliably identify benign and malignant breast cancer. This study aimed to optimise the testing algorithm. We used genetic programming methods to choose classification machines' best features and parameter values. Data mining is an important step of library discovery where intelligent methods are used to detect patterns. We are analysing data accessible from the U.C.I. deep-learning data set in Wisconsin. In this experiment, we equate four Weka clustering strategies with genetic clustering. A comparison of results reveals that sequential minimal optimization (S.M.O.) is better than I.B.K. and B.F. Tree processes, i.e. 97.71%.
doi:10.5121/ijscai.2020.9401 fatcat:bwsqedcd3rhgdjxtwpbe5kznom