Coded time of flight cameras

Achuta Kadambi, Refael Whyte, Ayush Bhandari, Lee Streeter, Christopher Barsi, Adrian Dorrington, Ramesh Raskar
2013 ACM Transactions on Graphics  
Glossy Object 0ns 1ns 2ns 2ns 4ns 8ns 8ns 10ns 10ns 11ns Figure 1: Using our custom time of flight camera, we are able to visualize light sweeping over the scene. In this scene, multipath effects can be seen in the glass vase. In the early time-slots, bright spots are formed from the specularities on the glass. Light then sweeps over the other objects on the scene and finally hits the back wall, where it can also be seen through the glass vase (8ns). Light leaves, first from the specularities
more » ... -10ns), then from the stuffed animals. The time slots correspond to the true geometry of the scene (light travels 1 foot in a nanosecond, times are for round-trip). Please see http://media.mit.edu/∼achoo/lightsweep for animated light sweep movies. Measured Amplitude Measured Range Transparent Phase Range of Foreground Range of Background Figure 2: Recovering depth of transparent objects is a hard problem in general and has yet to be solved for Time of Flight cameras. A glass unicorn is placed in a scene with a wall behind (left). A regular time of flight camera fails to resolve the correct depth of the unicorn (center-left). By using our multipath algorithm, we are able to obtain the depth of foreground (center-right) or of background (right). Abstract Time of flight cameras produce real-time range maps at a relatively low cost using continuous wave amplitude modulation and demodulation. However, they are geared to measure range (or phase) for a single reflected bounce of light and suffer from systematic errors due to multipath interference. We re-purpose the conventional time of flight device for a new goal: to recover per-pixel sparse time profiles expressed as a sequence of impulses. With this modification, we show that we can not only address multipath interference but also enable new applications such as recovering depth of near-transparent surfaces, looking through diffusers and creating time-profile movies of sweeping light. Our key idea is to formulate the forward amplitude modulated light propagation as a convolution with custom codes, record samples by introducing a simple sequence of electronic time delays, and perform sparse deconvolution to recover sequences of Diracs that correspond to multipath returns. Applications to computer vision include ranging of near-transparent objects and subsurface imaging through diffusers. Our low cost prototype may lead to new insights regarding forward and inverse problems in light transport.
doi:10.1145/2508363.2508428 fatcat:jp2cjmhjzze5rkepbvvsxtn5gm