Combined Kalman Filter and Multifeature Fusion Siamese Network for Real-Time Visual Tracking

Lijun Zhou, Jianlin Zhang
2019 Sensors  
SiamFC has a simple network structure and can be pretrained offline on a large data set, so it has attracted the attention of many researchers. It has no online learning process at all. Hence, there are no good solutions for some complex tracking scenarios such as occlusion and large target deformation. For this problem, we propose a method using the Kalman filter method and fusion multiresolution features and get multiple response scores. The Kalman filter acquires the target's trajectory
more » ... mation, which is used to process complex tracking scenes and to change the selection method of the search area. This also enables our tracker to stably track fast moving targets.The introduction of the Kalman filter compensates for the shortcomings that SiamFC can only track offline, and the tracking network has an online learning process. The fusion of multiresolution features to obtain multiple response scores map helps the tracker to obtain robust features that can be adapted to a variety of tracking targets. Our proposed method has reached the state-of-the-art in testing on five data sets and can be run in real time (40 fps), including OTB2013, OTB2015, OTB50, VOT2015 and VOT 2016.
doi:10.3390/s19092201 fatcat:dkgkgrh6wzayfdifde3l7kpvhe