Prediction of disease progression in patients with COVID-19 by artificial intelligence assisted lesion quantification

Yuehua Li, Kai Shang, Wei Bian, Li He, Ying Fan, Tao Ren, Jiayin Zhang
2020 Scientific Reports  
To investigate the value of artificial intelligence (AI) assisted quantification on initial chest CT for prediction of disease progression and clinical outcome in patients with coronavirus disease 2019 (COVID-19). Patients with confirmed COVID-19 infection and initially of non-severe type were retrospectively included. The initial CT scan on admission was used for imaging analysis. The presence of ground glass opacity (GGO), consolidation and other findings were visually evaluated. CT severity
more » ... core was calculated according to the extent of lesion involvement. In addition, AI based quantification of GGO and consolidation volume were also performed. 123 patients (mean age: 64.43 ± 14.02; 62 males) were included. GGO + consolidation was more frequently revealed in progress-to-severe group whereas pure GGO was more likely to be found in non-severe group. Compared to non-severe group, patients in progress-to-severe group had larger GGO volume (167.33 ± 167.88 cm3 versus 101.12 ± 127 cm3, p = 0.013) as well as consolidation volume (40.85 ± 60.4 cm3 versus 6.63 ± 14.91 cm3, p < 0.001). Among imaging parameters, consolidation volume had the largest area under curve (AUC) in discriminating non-severe from progress-to-severe group (AUC = 0.796, p < 0.001) and patients with or without critical events (AUC = 0.754, p < 0.001). According to multivariate regression, consolidation volume and age were two strongest predictors for disease progression (hazard ratio: 1.053 and 1.071, p: 0.006 and 0.008) whereas age and diabetes were predictors for unfavorable outcome. Consolidation volume quantified on initial chest CT was the strongest predictor for disease severity progression and larger consolidation volume was associated with unfavorable clinical outcome.
doi:10.1038/s41598-020-79097-1 pmid:33328512 fatcat:rxlhdknaqvf75onq3s5dznap54