
 

Option Valuation with Conditional Skewness*

 

 
Peter Christoffersen 

Faculty of Management, McGill University and CIRANO 
Montreal, QC H3A 1G5, Canada 
peter.christoffersen@mcgill.ca 

 
 

Steve Heston 
R.H. Smith School of Business 

University of Maryland 
College Park, MD 20742 

sheston@rhsmith.umd.edu 
 
 

Kris Jacobs 
Faculty of Management, McGill University and CIRANO 

Montreal, QC H3A 1G5, Canada 
kris.jacobs@mcgill.ca 

  

   

April 28, 2004 

 

* We would like to thank Tim Bollerslev, Peter Carr, Frank Diebold, Bjorn Eraker, Rob 

Engle, Eric Ghysels, Nour Meddahi, George Tauchen, Haluk Unal, seminar participants 

at HEC Montreal, the 14th Annual Derivatives Conference, the Triangle Econometrics 

Workshop, University of Maryland, and two anonymous referees for helpful comments. 

Christoffersen and Jacobs would like to thank FQRSC, SSHRC and IFM2 for financial 

support. John Kozlowski provided expert research assistance. Any remaining errors are 

ours. 



 

Option Valuation with Conditional Skewness 

 

 

 

Abstract 

There is extensive empirical evidence that index option prices systematically differ from Black-
Scholes prices. Out-of-the-money put prices (and in-the-money call prices) are relatively high 
compared to the Black-Scholes price. Motivated by these empirical facts, we develop a new discrete-
time dynamic model of stock returns with Inverse Gaussian innovations.  The model allows for 
conditional skewness as well as conditional heteroskedasticity and a leverage effect. We present an 
analytic option pricing formula consistent with this stock return dynamic. An extensive empirical test 
of the model using S&P500 index options shows that the new Inverse Gaussian GARCH model’s 
performance is superior to a standard existing nested model for out-of-the money puts, thus 
demonstrating the importance of conditional skewness. The discrete-time Inverse Gaussian GARCH 
process has two interesting continuous-time limits. One limit is the standard stochastic volatility model 
of Heston (1993a). The other is a pure jump process with stochastic intensity. Using these limit results, 
an equivalent motivation for our model is that it generalizes standard stochastic volatility models by 
allowing for “jumps” and other fat-tailed negative movements in stock returns. The empirical results 
therefore also demonstrate the importance of jumps for the pricing of out-of-the-money puts.  

 
JEL Number: G12 
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Introduction 

 There is extensive empirical evidence that index option prices systematically differ from 

Black-Scholes prices.1 Out-of-the-money put prices (and in-the-money call prices) are relatively high 

compared to the Black-Scholes price. This stylized fact is often represented by the well-known 

“volatility smirk”. One interesting approach to capturing these deviations from the Black-Scholes 

formula is to incorporate models of conditional heteroskedasticity (Hull and White (1987), Scott 

(1987), Heston (1993a)). At the empirical level, a number of papers have demonstrated that these 

models significantly improve upon the performance of the Black-Scholes model (e.g., see Bakshi, 

Cao, and Chen (1997), Bates (2000), Ding and Granger (1996), Engle and Mustafa (1992), Jones 

(2003) and Pan (2002)). Moreover, several papers have demonstrated that the performance of option 

valuation models with conditional heteroskedasticity can be further improved by including a so-called 

leverage parameter (Nandi (1998), Heston and Nandi (2000), Chernov and Ghysels (2000), 

Christoffersen and Jacobs (2002)).  

 The combination of leverage parameters and stochastic volatility or conditional 

heteroskedasticity captures the stylized fact that volatility increases relatively more when the stock 

price drops (Black (1976), Christie (1982)). This increases the probability of a large loss and 

consequently the value of out-of-the-money put options. Equivalently, the implications of the leverage 

effect can be understood by realizing that it generates negative skewness in stock returns.2

 While dynamic volatility models are intuitively and theoretically appealing, existing discrete-

time models may not be sufficiently flexible to explain observed option biases, even with leverage 

parameters included. This is particularly the case for options with short maturities. While the leverage 
                                                 
1 See for example Ait-Sahalia and Lo (1998), Bakshi, Cao, Chen, (1997), Bates (1996), Christoffersen 
and Jacobs (2002), Das and Sundaram (1999), Dumas, Fleming, and Whaley (1998), Garcia, Ghysels 
and Renault (2003), and Jackwerth (2000). 

2 See Heston (1993a) for an in-depth analysis of the impact of the leverage parameter on option prices. 
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parameter creates negative skewness in multi-period returns, single-period innovations are Gaussian in 

these models, and therefore standard models cannot explain the strong biases in short-term options.3 

We therefore suggest a complementary approach to generate skewness in the return distribution by 

modeling the conditional innovations to returns using a distribution with nonzero third moment.   

 This paper develops a discrete time model for spot prices that introduces conditional skewness 

into short-term spot returns in addition to conditional heteroskedasticity and a leverage effect. We 

model the conditional return innovation using an Inverse Gaussian distribution, and we combine the 

modeling of these nonstandard conditional innovations with a fairly standard model of time-varying 

conditional volatility that also contains a leverage effect. The resulting return dynamic, which we call 

Inverse Gaussian GARCH (or IG GARCH), is able to capture skewness in short-term as well as long-

term returns, and the conditional skewness reinforces the effects of the leverage parameter. We present 

a closed-form option pricing formula consistent with this return dynamic. 

  The discrete-time Inverse Gaussian GARCH process has two interesting continuous-time 

limits. One limit is the standard stochastic volatility model of Heston (1993a). The other is a pure 

jump process with stochastic intensity. Using these limit results, an equivalent motivation for our 

model is therefore that it generalizes standard stochastic volatility models by allowing for “jumps” and 

other fat-tailed negative movements in short-term stock returns, which is particularly useful for 

explaining the biases in short-term options (Carr and Wu (2003)). However, while jumps in stock 

returns reduce the bias in option prices, they cannot adequately address the magnitude of this bias 

(Bates (1996)). In other words, introducing jumps in returns works in a qualitative sense, because it 

reduces the biases, but not in a quantitative sense, because part of the bias remains. We therefore need 

a modeling approach that reinforces the effects of jumps in returns. One of the continuous-time limits 

of our model additionally contains jumps in volatility, and allows these jumps to be (negatively) 

                                                 
3 This critique formally applies only to discrete-time models. Diffusion models with jumps in stock 
returns and/or volatility may be able to capture deviations from normality. 
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correlated with jumps in stock returns.4 Compared to jumps in returns, jumps in volatility can have a 

larger impact on option prices because the volatility process is very persistent whereas the return 

process is not. With jumps in volatility, a series of moderate negative “jumps” in stock returns can 

dramatically increase volatility for a prolonged period. Small changes in the distribution of stock 

returns can therefore have a potentially large impact on option values. 

 We implement the model empirically using data on S&P500 index options. We compare the 

model’s performance to the Black-Scholes model as well as to a number of benchmarks. We find that 

our model performs well compared to these benchmarks. The most relevant benchmark for our model 

is the Heston-Nandi (2000) model, which is a model with conditional heteroskedasticity, a leverage 

effect and Gaussian innovations, and which is nested in our model. In-sample the Inverse Gaussian 

model improves upon the performance of the Heston-Nandi model in every respect, which is not 

surprising because it nests the Heston-Nandi model. Out-of-sample, the model’s performance is 

mixed. While the Inverse Gaussian model improves on the Heston-Nandi model for the valuation of 

out-of-the-money puts, this is not necessarily the case for other options. When keeping the model 

parameters constant for up to ten weeks, the valuation of the Inverse Gaussian model improves on that 

of the Heston-Nandi model. However, when keeping the parameter estimates constant for longer 

periods, the Inverse Gaussian model is outperformed by the Heston-Nandi model. We therefore 

conclude that the benefits of modeling conditional skewness and jump processes are mixed, and 

depend on the use of the models; the richer parameterization of these models is helpful in-sample and 

for some out-of-sample assessments, but a more parsimonious parameterization may be preferable 

dependent on the strategy one pursues. Presumably many strategies that use options only rely on 

keeping the parameters constant for short out-of-sample periods, even though changing the model 

parameters implies a theoretical inconsistency. 

                                                 
4 See e.g. Duffie, Pan and Singleton (2000), Pan (2002), Eraker (2003), Eraker, Johannes and Polson 
(2003), and Duan, Ritchken and Sun (2002). 
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 The model is presented in the next two sections. Subsequently we present empirical 

assessments of the model using S&P500 index returns and options prices. A final section concludes. 

Some technical material on the Inverse Gaussian distribution is relegated to the appendix.  

1. The Stock Price Dynamics  

1.1. The Inverse Gaussian Distribution 

 The basic building block for this model is a random variable with an Inverse Gaussian 

distribution. We shall use draws from this distribution as building blocks for a discrete-time stochastic 

process with conditional heteroskedasticity.5  The Inverse Gaussian density has positive support (y>0); 

its distribution function with parameter δ is given by 

 P(y;δ)  =  
δ

∫
y

0 2πz3
e-( z-δ/ z)2/2dz  =  N( y

y
+

δ− ) + e2δN( y
y

−
δ− ). (1) 

Straightforward (albeit tedious) integration gives a generalization of the moment generating function: 

  E[exp(φy+θ/y)]  =  
δ

δ2-2θ
exp(δ- (δ2-2θ)(1-2φ)). (2) 

and the moments: E[y]  =  δ,  Var[y]  = δ, (3) 

  E[1/y]  =  1/δ + 1/δ2,  Var[1/y]  =  1/δ3+ 2/δ4, 

  Skew[y]  =  E[(y-E[y])3]/Var[y]3/2  =  3/Sqrt(δ),   

  Kurt[y] = E[(y-E[y])4]/Var[y]2 - 3 = 15/δ,  Cov[y,1/y]  =  -1/δ. 

                                                 
5 For more detail see Johnson, Kotz and Balakrishnan (1994), Chapter 15. For an intuitive derivation 
of the inverse Gaussian distribution see Whitmore and Seshadri (1987). 
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1.2. The Inverse Gaussian GARCH Process 

We combine the conditional skewness of the Inverse Gaussian distribution with GARCH-type 

dynamics that contain conditional heteroskedasticity and a leverage effect.6 This gives the model 

flexibility to capture moneyness effects for short-term as well as long-term options. The new dynamic 

model specifies returns on a spot asset price at time t, S(t), and the conditional variance of return 

h(t+∆) as 

  log(S(t+∆)/(S(t))  =  r∆ + νh(t+∆) + ηy(t+∆),  (4a) 

  h(t+∆)  =  w + bh(t) + cy(t) + ah(t)2/y(t), (4b) 

where, given the available information at time t, y(t+∆) has an Inverse Gaussian conditional 

distribution with degrees of freedom parameter δ(t+∆) = h(t+∆)/η2. As δ(t+∆) represents the first 

moment in the IG distribution the zero-mean stock return innovation is given by y(t+∆)−h(t+∆)/η2. 

Consider the conditional mean dynamic in (4a). For the Inverse Gaussian distribution to display 

negative skewness, we need a negative value of η.  Given an offsetting positive value of νh(t+∆) in 

equation (4a), the dynamic can therefore generate positive as well as negative returns centered around 

a small positive value.  Figure 1 illustrates how a standardized Inverse Gaussian distribution can 

display negative skewness given appropriate parameter values.  As the degrees of freedom parameter 

approaches infinity the standardized Inverse Gaussian distribution converges to the standard Gaussian 

distribution.  We label this model the Inverse Gaussian GARCH(1,1), because it consists of combining 

an Inverse Gaussian distribution with a GARCH(1,1) type volatility dynamic in (4b).7  We can use the 

moments of the Inverse Gaussian in (3) to show that the conditional mean and variance of the spot 

process (4) are linear functions of the current variance. 

                                                 
6  See Nelson (1991) for another approach that alters the GARCH dynamic and introduces conditional 
nonnormality. 
7 For more complex dynamics one can nest higher-order GARCH processes by adding lagged 
disturbances to the dynamics of the conditional variance. 
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From equation (4a) the conditional mean and variance can be derived as  

  Et[log(S(t+∆)/S(t))]  =  r∆ + (ν+η-1)h(t+∆), (5a) 

Vart[log(S(t+∆))]  =  h(t+∆).  

And from equation (4b) we can compute variance persistence as the coefficient on h(t+∆) in 

  Et[h(t+2∆)]  =  w + η4a + (aη2+b+c/η2)h(t+∆), (5b) 

It can also be seen from (5b) that the unconditional variance is (w + η4a)/(1-aη2-b-c/η2). 

The variance of variance is given from equation (4b) by 

  Vart[h(t+2∆)]  =  2a2η8+(c2/η2-2η2ac+a2η6)h(t+∆), (5c) 

and the leverage effect can be quantified as the conditional covariance between returns and variance as 

in  

  Covt[log(S(t+∆)/S(t)),h(t+2∆)]  =  (c/η-η3a)h(t+∆). (5d) 

Finally, the conditional skewness of the return is  

  Skewt[log(S(t+∆)/S(t))] = 3/Sqrt(δ(t+∆)) = 3η(h(t+∆))-1/2. (5e)  

 Although the functional form appears quite different, the Inverse Gaussian GARCH is closely 

related to existing GARCH processes. By taking the limit as η approaches zero and using the 

following parameterization,  

  ν = λ-η-1,  w  =  ω,  a  =  α/η4, (6) 

  b  =  β + αγ2-2α/η2+2αγ/η,  c  =  α-2ηαγ, 

the Inverse Gaussian GARCH(1,1) converges to the Heston-Nandi (2000) asymmetric GARCH model 

with normal disturbances z(t+∆) 
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  log(S(t+∆)/S(t))  =  r∆ + λh(t+∆) + h(t+∆)z(t+∆), (7a) 

  h(t+∆)  =  ω + βh(t)+ α(z(t)-γ h(t))2. (7b)

For a given η, the parameterization in (6) matches the first two conditional moments of the Inverse 

Gaussian GARCH model in equation (5) with those in the Heston-Nandi model. In addition, by letting 

η approach zero, the skewness vanishes and the standardized Inverse Gaussian innovation 

(y(t+∆)−δ(t+∆))/Sqrt(δ(t+∆)) from equation (4a) converges to the Gaussian innovation z(t+∆) from 

equation (7a). Finally, the parameters in equation (6) make equation (7b) a second-order Taylor series 

approximation to equation (4b).  Therefore the Inverse Gaussian GARCH model nests the Heston-

Nandi model as a limiting case when η approaches zero. 

1.3. Continuous-Time Limits 

 While the Inverse Gaussian GARCH(1,1) is a discrete model that is readily implementable 

with discrete data, it has two interesting continuous-time limits. First, consider the case where η 

approaches zero. As shown above, in this case the IG GARCH model converges to the Heston and 

Nandi (2000) Gaussian GARCH model. As shown in Heston and Nandi (2000), this model converges 

to Heston’s (1993a) square-root model as a diffusion limit.8  Consider letting the time interval ∆ shrink 

to zero in the Heston-Nandi model and define v(t) = h(t)/∆ to be the variance per unit of time. Then let 

ω(∆) = (κθ-¼σ2)∆2, β = 0, α(∆) = ¼σ2∆2,  γ(∆) = 2/(σ∆)-κ/σ. As the time interval shrinks the variance 

per unit of time converges weakly to the square-root diffusion process and we obtain the Heston 

(1993a) model  

  d log(S(t)) = (r + λv(t))dt + v(t)dz(t)  (8) 

  dv(t)  =  κ(θ-v(t)) + σ v(t)dz(t),  

                                                 
8 See also Nelson (1990). 
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where z(t) is a Wiener process. See Heston and Nandi (2000, Appendix B) for more details regarding 

this limit. 

Second, we can let the time interval shrink with the alternative parameter limits 

  a(∆)  =  0,  b(∆)  =  1-b∆,   (9) 

  c(∆)  =  c∆,  w(∆)  =  w∆2  

where we now rely on the IG GARCH parameters directly. Again letting v(t) = h(t)/∆ represent the 

variance per unit of time we obtain a pure jump process as the time interval shrinks   

  d log(S(t))  =  (r+νv(t))dt + ηdy(t),  (10a) 

  dv(t)  =  (w-bv(t))dt + c dy(t), (10b) 

where y(t) is a pure-jump inverse Gaussian process with degrees of freedom δ(t) = v(t)/η2 in the 

interval [t,t+dt]. The stock price converges to a pure jump process with stochastic intensity.9 To 

provide some more intuition for the dynamics of this process, Figure 2 shows how an Inverse 

Gaussian random walk converges to a Wiener process as the skewness parameter converges to zero.  

 Note that this continuous-time limit contains jumps in volatility in addition to jumps in returns, 

and allows these jumps to be (negatively) correlated. Compared to jumps in returns, jumps in volatility 

can have a larger impact on option prices because the volatility process is very persistent whereas the 

return process is not. With jumps in volatility, a series of moderate negative “jumps” in stock returns 

can dramatically increase volatility for a prolonged period. Small changes in the distribution of stock 

returns can therefore have a potentially large impact on option values. 

                                                 
9 The Inverse Gaussian process has been investigated by Barndorff-Nielsen and Levendorskii (2000) 
and Bollerslev and Forsberg (2002). See also the excellent overview of related processes in Barndorff-
Nielsen and Shephard (2001).  

 9



 In summary, the continuous-time limits suggest that the dynamic process (4) displays 

remarkable flexibility: it is able to capture both diffusion processes and pure jump processes 

dependent on the degree of skewness or kurtosis of returns.  

2. Option Valuation 

 Option valuation in the Inverse Gaussian GARCH model requires additional assumptions 

beyond the absence of arbitrage.  According to equation (4) the spot price S(t+∆) equals 

exp(µ+ηy(t+∆)), where µ = ln(S(t))+r∆+νh(t+∆) and y(t+∆) has an Inverse Gaussian distribution with 

degrees of freedom δ. Hence the conditional density for S(t+∆) given the information at time t is log-

Inverse-Gaussian displaced by µ and scaled by η 

 p(S(t+∆))  = (11) 

 
δ η

2π(ln(S(t+∆))-µ)3/2S(t+∆)
exp({ (ln(S(t+∆))-µ)/η-δ/ (ln(S(t+∆))-µ)/η}2). 

In this discrete-time framework, the stock price can jump to an infinite set of values in a single period 

and consequently one cannot uniquely value options through the absence of arbitrage with respect to a 

finite number of securities (e.g., a stock and a bond).  

 Although absence of arbitrage does not identify unique option values, it establishes the 

existence of a “risk-neutral” probability density p*(S(t+∆)) under which conditional expected returns 

equal the riskless interest rate.  The ratio of the risk-neutral probability density to the true probability 

density is called the state-price density.  In order to value options one must characterize this state-price 

density.  Rubinstein (1976) and Brennan (1979) originally used the log-normal distribution with power 

utility to describe the state-price density, and called this a “risk-neutral valuation relationship”.  

Subsequent literature shows that we can also derive risk neutral valuation relationships for other 

combinations of utility functions and distributional assumptions.10  Heston (1993b) and Stutzer (1996, 

                                                 
10 See for example Vankudre (1986), Smith (1987), and Camara (2003). 
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equation (6)) combine power utility and exponential utility with log-exponential distributions. We 

proceed along the lines of Gerber and Shiu (1993, 1994) and Heston (2004) who specifically illustrate 

this with the Inverse Gaussian distribution.   

Assumption:     The conditional state-price density takes the power form 

  .tt~tp/(S(t*p
~γβ ))()/∆+((  =   ))∆+(( ))∆+ SSS  (12) 

The preference parameters β~   and γ~   need not explicitly enter the option formula.  Instead one can 

substitute the interest rate and spot price by imposing the condition that the current values of a bond 

and stock must equal their discounted expected state-prices  

  ]))(/)((~E[1  e
~-r γβ tStS ∆+×=∆ , (13) 

  ]))(/)((~)E[S(t  S(t)
~γβ tStS ∆+×∆+= . 

The appendix solves these equations for β~  and γ~  and shows the resulting risk-neutral conditional 

distribution p*(S(t+∆)) remains log-Inverse-Gaussian with corresponding scaling parameter η* and 

degrees of freedom parameter δ*(t+∆) 

 η*  =  ν2η3/(1+ ½ν2η3)2, (14)  

  δ*(t+∆)  =  δ(t+∆) η/η*. 

Since the conditional variance in equation (4) is related to the degrees of freedom according to the 

relation h(t+∆) = η2δ(t+∆), we can define the conditional risk-neutral variance h*(t+∆)  =  η∗2δ∗(t+∆)  

=  h(t+∆)(η*/η)3/2. Substituting this expression and the risk-neutral parameters (14) into the original 

process (4) allows us to characterize the risk-neutral dynamics as an Inverse Gaussian GARCH 

process with different parameters. 

Proposition 1:  Under the risk-neutral probabilities the stock price follows the process 
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  log(S(t+∆))  =  log(S(t)) + r∆ + ν*h*(t+∆) + η*y*(t+∆),  (15a) 

  h*(t+∆)  =  w* + bh*(t) + c*y*(t) + a* h*(t)2/y*(t), (15b) 

where  

   ν*  =  ν(η*/η)-3/2,  y*(t+∆)  =  y(t+∆)(η*/η)-1, 

    w*  =  w(η*/η)3/2,  c*  =  c(η*/η)5/2,  a*  =  a(η*/η)-5/2, 

and y*(t+∆) has an Inverse Gaussian distribution with parameter δ*(t+∆) = h*(t+∆)/η*2. 

The risk-neutral dynamic in (15) contains six parameters ν*, w*, b, c*, a* and η*. Appendix C 

characterizes the risk-neutral dynamic in a different but equivalent way, which clarifies that in fact η* 

is a function of the other parameters. The risk-neutral dynamic therefore only contains five 

independent parameters. This is analogous to the Black-Scholes formula where the true drift parameter 

of the stock price is eliminated from the (risk-neutral) pricing formula. In our model option values 

depend only on the history of the stock price, as summarized by the conditional volatility, and on the 

five risk-neutral parameters ν*, w*, b, c*, and a*. 

 To provide some intuition for the pricing in this model, consider the discounted expected 

payoff, which yields a simple two-parameter generalization of the Black-Scholes (1973) formula. 11

Proposition 2:  The value of a one-day call option with strike price K is 

 C  =  S P(
**

*h*r)S/Klog(
η

ν−∆− ; δ**)  -  Ke-r∆P(
*

*h*r)S/Klog(
η

ν−∆− ; δ*),  for η < 0, (16a) 

and 

C  = S [1-P(
**

*h*r)S/Klog(
η

ν−∆− ; δ**)]  -  Ke-r∆[1-P(
*

*h*r)S/Klog(
η

ν−∆− ; δ*)],  for η > 0, (16b) 

                                                 
11 The two-parameter formula in equation (16) ultimately depends only on parameters of the true 
distribution and is more parsimonious than the three-parameter expression of Gerber and Shiu (1993, 
1994).  This formula also appears in Heston (2004). 
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where η**  =  η*/(1-2η*), δ**  =  δ* 1−2η*, h* is the one period variance, and where P(.) represents 

the Inverse Gaussian distribution function. The formula converges to the Black-Scholes formula as the 

degrees of freedom parameter δ gets large, which is not surprising given the convergence result for the 

Inverse Gaussian distribution. 

 Given the risk-neutral probability distribution and characteristic function (see Appendix A), we 

can value a call option using the inversion formula of Heston and Nandi (2000) or Bakshi and Madan 

(2000). This “closed-form” solution is very convenient in empirical work. It avoids the use of Monte 

Carlo techniques, which in many applications are potentially slower and less accurate.  

Proposition 3: At time t, a European call option with strike price K that expires at time T is worth  

  C  =  e-r(T-t)Et∗[Max(S(T)-K,0)]  = (17) 

  S(t)(½ + 
e-r(T-t)

π ⌡
⎮
⌠

0

∞

Re[
K-iφf∗(iφ+1)

iφ ]dφ) – Ke-r(T-t)(½ + 
1
π⌡

⎮
⌠

0

∞

Re[
K-iφf∗(iφ)

iφ ]dφ), 

where f*(iφ) denotes the characteristic function of the risk-neutral version of the process given in 

Appendix A. 

 Figure 3 provides some intuition for the potential benefits of the Inverse Gaussian GARCH 

model. All pictures represent the price of European call options with an exercise price of $100 and 

have the value of the current stock price on the horizontal axis. The two top pictures show the 

difference (in dollars) between either the Heston-Nandi and Black-Scholes prices or the Inverse 

Gaussian GARCH and Black-Scholes prices, for an option with twenty days to maturity.  It can be 

seen that both the Heston-Nandi and Inverse Gaussian GARCH models lower the price of out-of-the-

money calls and increase the price of in-the-money calls vis-à-vis the Black-Scholes model.  The 

effect is stronger for the Inverse Gaussian GARCH, and is also stronger the more negative the 

skewness parameter η*. To provide some more perspective for these results, note that the Black-
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Scholes price is $0.54 when the current stock price is $95.  It can be seen from Figure 3 that the 

difference in prices between the IG GARCH and Black-Scholes model is more than ten cents, which is 

substantial on a 54 cent option.  

 The middle two pictures in Figure 3 indicate that for long maturities (1 year) the effects on 

option values as a function of moneyness are similar to short maturities although of course the dollar 

values are larger now. The bottom two pictures present results for the difference between the IG and 

HN models. The interesting observation is that the maximum dollar effect of the IG GARCH model 

does not differ much by maturity, but that the maturity slightly affects at which moneyness the model 

has maximum impact.  

3. Empirical Results 

3.1. Options Data 

We now turn to the empirical results on the Inverse Gaussian GARCH model. We also provide 

empirical results on the Heston and Nandi (2000) model (HN), which is nested in the IG GARCH 

model and therefore provides an interesting benchmark. We implement these models using a data set 

on S&P500 European call options (SPX) from the CBOE. The liquidity in the SPX option market is 

relatively high, and this market has therefore been analyzed by a number of researchers.12

 We split up our data into an in-sample and an out-of-sample period; the models are estimated 

using the in-sample data only. Table 1 gives an overview of the in-sample data, which consist of 

option contracts on 156 Wednesdays in the period January 2, 1990 through December 31, 1992.13 We 

restrict attention to option contracts with maturities between 7 and 180 days and we apply a number of 

standard filters to the data.14  The resulting in-sample data set consists of 7,219 Wednesday closing 

quotes. The average call option price for the entire sample is $20.28 and the average implied Black-

                                                 
12 See for example Bakshi, Cao and Chen (1997), Chernov and Ghysels (2000), Dumas, Fleming and 
Whaley (1998), Heston and Nandi (2000) and the references therein. 
13 We use Wednesdays only to keep the computations manageable. The same approach was taken by 
Dumas, Fleming and Whaley (1998), Heston and Nandi (2000) and Christoffersen and Jacobs (2002). 
14 We use the same filters as Bakshi, Cao and Chen (1997). 

 14



Scholes volatility is 23.17%. The well-known post-1987 volatility smirk is evident from Table 1C. 

The deep in-the-money call option implied volatility is more than 45% for options with less than 20 

days to maturity compared with less than 18% for the corresponding out-of-the-money call options. 

The smirk does flatten somewhat with maturity; for options with more than 80 days to maturity the 

implied volatility is more than 30% for deep in-the-money calls and less than 19% for out-of-the-

money calls. 

 When calculating the option prices one has to account for dividends paid on the stocks in the 

index. This is dealt with in different ways in the literature. For example, Jiang and Van der Sluis 

(2001) assume a constant dividend yield. We follow Bakshi, Cao and Chen (1997) and discount future 

dividends paid out during the life of each option from the current index value corresponding to the 

option. We use the Treasury yield term-structure in the discounting.  

 

3.2 Estimating the Models from Returns Under the True Statistical Probability Distribution 

 Because the HN and IG GARCH option valuation models are derived starting from the return 

dynamics, differences between the models’ ability to price options should also be apparent from their 

ability to fit the dynamics of the underlying asset. In this section we compare the models’ ability to fit 

the returns on the underlying S&P500 index. In addition to the HN and IG GARCH valuation models, 

we also present estimation results on two nested models, which we label the homoskedastic Gaussian 

and the homoskedastic IG model, respectively. These models eliminate the GARCH effects from the 

dynamics in (4) and (7) by imposing β  = α  =  γ = 0 and b = a = c = 0 respectively. The resulting 

homoskedastic models are two- and three-parameter models. A comparison of the fit of these two 

models indicates the importance of conditional skewness in the absence of heteroskedasticity and 

volatility clustering. 

Table 2 contains the Maximum Likelihood point estimates of the parameters for the Gaussian 

and IG models as well as their standard errors, obtained under the true statistical probability 
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distribution.15 The models are estimated on daily total index returns from CRSP for the period January 

3, 1989 through December 20, 2001. We use a time series that is longer than the option dataset 

because it is well known that it is difficult to estimate return dynamics precisely using short time 

series. 

Perhaps more interesting than the individual parameter estimates are the model properties 

reported in the bottom panel of Table 2. All models imply an unconditional volatility of approximately 

15% per year. The HN model parameter estimates as well as the IG GARCH estimates imply a daily 

variance persistence of approximately 0.962. 

The leverage correlation is computed using the unconditional version of the moments in (5), 

specifically we compute the correlation as  

Cov[log(S(t+∆),h(t+2∆)] / { Stdev[log(S(t+∆))] * Stdev[h(t+2∆)] }. 

Notice that the leverage correlations are quite similar across models and are negative and quite large. 

The log-likelihoods allow several interesting tests. First, it is clear that in the Gaussian case the 

improvement in fit from the two-parameter homoskedastic model to the five parameter HN model is 

statistically significant at conventional significance levels. The same is true for the improvement in fit 

of the six-parameter IG GARCH model over the three-parameter homoskedastic IG model. Second, 

while the HN and IG GARCH models appear to be fairly similar in terms of the above characteristics, 

their log-likelihoods are dramatically different. The IG model has one extra parameter and provides a 

much better fit. The increase of over 39 points in log-likelihood going from the HN to the IG model is 

very large and statistically significant at conventional significance levels. The S&P500 return data thus 

strongly favor the IG specification. Third, the homoskedastic IG model improves on the fit of the 

homoskedastic Gaussian model and the extra parameter is significantly estimated. The increase of 7.6 

in the log-likelihood is significant at conventional significance levels. 

                                                 
15 The standard errors are calculated from the outer product of the vector of gradients evaluated at the 
ML parameter values. 
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3.3 Estimating the Risk Neutral Models Using Option Prices  

 While the return-based estimation in Table 2 is interesting, it is well known that for the 

purpose of option valuation, parameters estimated from option prices are preferable to parameters 

estimated from the underlying returns (see for instance Chernov and Ghysels (2000)). We therefore 

estimate the HN and IG models using option prices.  

 The implementation of these dynamic models is important and deserves comment. First 

consider the implementation of the Heston and Nandi (2000) model in (7), which has the risk-neutral 

dynamic 

  log(S(t+∆))  =  log(S(t)) + r∆ – 0.5h∗(t+∆) + )t(*h ∆+ z*(t+∆),  (18a) 

  h∗(t+∆)  =  ω + βh∗(t)+ α(z*(t)-γ∗ )t(*h )2,  (18b) 

Substituting (18b) in (18a) we get conditional variance in terms of observed returns 

  h∗(t+∆)  =  ω + βh∗(t)+ (α/ h∗(t))( log(S(t)/S(t-∆)) - r∆ + 0.5h∗(t) - γ∗h∗(t))2,  (19) 

The model is implemented by initializing h*(0) using the unconditional variance (ω+α)/(1−β−αγ∗2) 

and then using the GARCH updating in (18). We start the iteration 250 trading days before the first 

option date to allow for the model to find the right conditional variance.16 We then obtain estimates of 

the (risk-neutral) parameters ω, α, β and γ∗ by minimizing the mean squared error based on the 

difference between actual option prices and model values using NLS.  

( )∑ γβαω−=
N

t,i

2
t,it,i *),,,(CC

N
1MSE  

Now consider the IG model in (4) with its risk-neutral dynamic (15). Substituting (15b) in (15a) yields 

   h*(t+∆) = w* + b h*(t) + (c*/η*) (log(S(t+∆)/S(t))-r∆ - ν*h*(t)) + 

                                                 
16 In all experiments we set r∆ equal to 0.05/365 in our use of the dynamic in (7). When valuing 
options we follow the established tradition of allowing for a time varying term structure of risk free 
interest rates even though the model strictly speaking assumes constant interest rates.  
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  (a* h*(t) 2η*) / (log(S(t+∆)/S(t)) – r∆ - ν*h*(t) )  (20) 

Again, we initialize h*(0) using the unconditional variance (w*+η*4 a*)/(1− a ∗η*2−b*− c*/η*2) and then 

we use the GARCH updating rule. Minimizing the dollar-based mean squared error gives us estimates 

of the five independent parameters w*, η*,  a ∗, b* and c*. It must be noted that the updating rules (19) 

and (20) will also be used in the out-of-sample analysis below. The discrete-time GARCH formula 

enables daily valuation of out-of-sample option values in a straightforward way, which is a strength of 

this type of model. 

Table 3 shows the nonlinear least squares (NLS) estimates of the four models analyzed in 

Table 2, obtained by minimizing the squared dollar option pricing error, using data for 156 

Wednesdays in the 1990-1992 period. Panel A shows the estimates using all the 7,219 option contracts 

in the sample whereas Panel B only uses the 776 options with at most 20 days to maturity.  

The parameter estimates in Table 3 refer to the risk neutral representation of the models. Note 

that all four models contain one less parameter compared to their representation under the true 

statistical distribution in Table 2. As demonstrated by Heston and Nandi (2000), the HN model 

performs quite well in valuing SPX options. The root mean squared error (RMSE) for the 7,219 

contracts with an average price of $20.28 (Table 1.B) is $1.0043 for the HN model. The IG GARCH 

model performs slightly better with an RMSE of $0.9586, which represents a 4.77% improvement. 

When estimating the models on the short-term contracts, the RMSE is of course lower for both 

models. The RMSE for the HN model is now $0.6072 versus $0.5702 for the IG model, which 

represents a 6.5% improvement. The relative improvement in fit resulting from the extra parameter in 

the IG specification is thus larger for shorter-maturity options.17  

Table 3 allows for a number of other conclusions from comparing the four models as well as 

from a comparison with the results in Table 2. First, the improvement in fit resulting from adding three 

extra parameters in the GARCH models vis-à-vis the homoskedastic models is always substantial, but 

the improvement is smaller in Panel B. Second, the improvement in fit resulting from one extra 

                                                 
17  These differences are clearly small compared with the typical bid-ask spread. 
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parameter in the IG models is larger for the homoskedastic models. Perhaps related to this, the 

estimate of η* is much larger (in absolute value) for the homoskedastic model. Third, the leverage 

correlation is close to –1 in all cases, and is much larger (in absolute value) than the leverage 

correlation for the true statistical distribution documented in Table 2.  Fourth, for the GARCH models 

the persistence of the variance is higher under the risk neutral than under the true statistical 

representation in Table 2. This is true when estimating the models using all maturities, and also when 

restricting the sample to maturities of at most 20 days.  

While Table 3 only reports the aggregate fit of the two GARCH models, Table 4 shows the fit 

in mean squared error across maturity and moneyness bins. Table 4 uses the parameter estimates based 

on all the available contracts. Note that generally the dollar fit is better for the cheaper short-term (left 

column) and out-of-the-money call options (top rows). A comparison of the two models is most easily 

done using Table 4C which reports the ratio of the MSEs of the two models. The bottom row (marked 

“All”) indicates that the IG model outperforms the HN model for all three maturity bins but mostly so 

for the longer-term options. The rightmost column (also marked “All”) indicates that the IG model 

outperforms the HN model for all moneyness bins. Most of the improvement comes from the out-of-

the-money calls, and to some degree from the deep in-the-money calls, which from put-call parity 

correspond to deep out-of-the-money puts.  

Table 5 provides additional evidence on these improvements in fit. Each panel presents model 

bias, which is defined as average market price minus average model price, across moneyness and 

maturities.  Panel C indicates that the Black-Scholes price is too high for deep out-of-the-money calls 

and too low for deep in-the-money calls. Figure 3 suggests that the HN and IG GARCH models can 

potentially address these biases, and Table 5 confirms that this is indeed the case for these data.  The 

biases have the same sign but are much smaller in absolute value in Panel A for the HN model, and 

smaller yet in Panel B for the IG GARCH model.  Interestingly, however, most biases are still present 

with the same sign.  

Figure 4 illustrates the performance of the models from an implied volatility perspective. It 

shows the average implied volatility smile for options with less than 20 days to maturity during the 
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1990-1992 period (solid line). It also depicts the average volatility smile implied from the model based 

option values from the HN GARCH (dashed) and IG GARCH models (dotted) using the parameter 

estimates from Table 3.B. The figure illustrates that the IG model captures the volatility smile slightly 

better than the HN model. Unfortunately neither model is fully able to capture the steepness of the 

smile present in the data. The conclusions are similar from longer maturities but the difference in 

implied volatility between the two models is smaller.   

 

3.4. Out-of-Sample Analysis 

 The true test of any estimated model is its out-of-sample performance. We therefore evaluate 

the models’ performance using option data on 52 additional Wednesdays corresponding to the 1993 

calendar year.18 We apply the same filters to these data and again restrict attention to options with 

maturities between 7 and 180 days. The basic features of the 2,985 contracts in the out-of-sample data 

set are reported across maturity and moneyness bins in Table 6. Notice again the steep smirk for short-

term options. Figure 5 graphs the average implied volatility for the 208 Wednesdays in the in-sample 

and the out-of-sample period. It is clear that the data display substantial volatility clustering and that 

there are substantial changes in implied volatility over the four-year period. For the interpretation of 

the out-of-sample results, it is important to note that the implied volatility in the out-of-sample period 

is lower than in the in-sample period, and that volatility seems to have been trending downward over 

the period 1990-1993. 

 Table 7 shows the overall out-of-sample MSE for the HN and IG models during the out-of-

sample period. Each model is evaluated using the parameter estimates from the 1990-1992 sample 

period. Notice that overall the more parsimonious HN model performs much better than the IG model 

out-of-sample. This conclusion holds when all options are included (Panel A) but also when the 

sample is limited to options with less than 20 days to maturity (Panel B). It is also interesting that in 
                                                 
18 When calcuating option values out-of-sample, we update information on interest rates and stock 
index values but we use the parameters from the in-sample estimation period. For details on the out-
of-sample implementation in this type of discrete time models, see Heston and Nandi (2000) and 
Christoffersen and Jacobs (2002). 
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Panel A the deterioration in the HN model going from in-sample to out-of-sample is minor, whereas 

the deterioration in the IG model is substantial.  

 

3.6. Interpretation

Table 7 suggests that the IG GARCH model performs poorly out-of-sample. However, Table 8 

and Figures 6 and 7 show that one has to be cautious when investigating the out-of-sample 

performance of the IG GARCH model. Table 8 analyzes the out-of-sample performance of the HN and 

the IG GARCH models by maturity and moneyness. Table 8C shows the ratio of the IG to HN model 

MSEs. Considering the rightmost column we see that the out-of-sample performance of the IG model 

is particularly poor for the longer-term options. Considering the bottom row we see that the IG model 

is actually better than the HN model for the deep in-the-money call options. Whereas the in-sample 

results in Table 4 showed improvements in IG over HN for both in-the-money and out-of-the-money 

options the conditional skewness in the IG model only has an beneficial effect out-of-sample for the 

deepest in-the-money calls (and equivalently the deepest out-of-the-money puts). We therefore 

conclude that the out-of-sample performance of the IG GARCH model is satisfactory for addressing 

one important remaining problem in option valuation, the valuation of out-of-the-money puts. 

However, the model fails out-of-sample along a number of other dimensions. 

Figure 6 shows the cumulative RMSEs as a function of time in the in- and out-of-sample 

periods. The top left panel of Figure 6 shows the cumulative in-sample RMSEs for the two models. 

Both models have relatively stable RMSEs over time and the RMSE for the IG model (solid line) 

tends to be below or very close to the HN model (dashed). The bottom left panel reports the ratio of 

the cumulative in-sample RMSEs. It appears that the IG model improvements come from early in the 

sample as well as around week number 100. The full in-sample RMSE ratio is .9586/1.0043 = .9545. 

More interesting are the corresponding figures for the 52-week out-of-sample period. The top 

right panel shows the cumulative RMSE for the two models and the bottom panel shows the ratio of 

the RMSEs. It is quite striking how the in-sample improvement in IG over HN continues 10 weeks 

into the out-of-sample period. Beyond 10 weeks out-of-sample, both models deteriorate substantially; 
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however, the performance of the IG model deteriorates much more than that of the HN model. 

Consequently, the ratio of the RMSEs increases sharply from week 10 through week 25 until it 

reaches its full out-of-sample average of 1.3611/1.0778 = 1.2629. One possible interpretation of these 

findings is that the conditional skewness parameter η* in the IG model is difficult to estimate perhaps 

because it is truly dynamic. Keeping the IG parameters constant over long periods in an out-of-sample 

analysis puts heavy demands on the models and causes its performance to deteriorate. More generally, 

it must of course be noted that this type of long out-of-sample valuation exercise may simply be too 

ambitious for this type of models, as may be evidenced by the deteriorating RMSE as a function of the 

forecast horizon.19

Figure 7 repeats the analysis in Figure 6, but only deep-in-the-money calls are included. We 

see that the overall good out-of-sample performance of the IG GARCH model for deep in-the-money 

calls (out-of-the-money puts) is confirmed regardless of the out-of-sample horizon.  

Figure 8 provides further background evidence that helps us understand the relative 

performance of the HN and IG models. The two top panels report the evolution of the conditional 

standard deviation over time for the two models. Note that we have days on the horizontal axis, 

instead of weeks as in Figure 6. The reason is that we use option prices on Wednesdays (once a week), 

but we use daily information on returns to update the volatility dynamic.  It is clear that the sample 

paths of the volatilities are very similar, even though the bottom left picture indicates that the 

differences are more pronounced in the out-of-sample period (the beginning of this period is indicated 

by the vertical line). The bottom right picture plots the difference between the volatilities. While the 

difference is small in the in-sample period, there is a time period in the out-of-sample period where the 

IG volatility suddenly becomes about 2% higher than the HN volatility. This difference in volatility 

disappears rather slowly, because of the persistence in the estimated processes. This difference in 

                                                 
19 Bates (2003) argues that, due to the persistence in the implied volatility surface, short out-of-sample 
periods will tend to favor heavily parameterized models which also perform well in sample. We 
concur with this view and assess the out-of-sample performance of each model keeping the parameters 
fixed for up to a year. 

 22



estimated volatility between the two processes coincides with the RMSE differences observed in 

Figure 6. 

These empirical results are of substantial interest. The literature on continuous-time processes 

with jumps is growing fast and a large number of papers investigate the impact of jumps in returns and 

volatility on option prices.  However, many of these papers analyze the importance of jumps in-

sample, and others estimate model parameters exclusively from returns data or using a rather limited 

set of option prices (e.g., see. Bates (2000), Pan (2002), and Duan, Ritchken and Sun (2002)). Our 

discrete-time model contains some of the jump models analyzed in these papers as a limit, and it has 

the advantage for out-of-sample pricing that it is more parsimoniously parameterized. The findings in 

this paper should therefore be of interest for this literature, because even though the pricing of out-of-

the money puts out-of-sample is quite satisfactory, this is not the case for other options. Also, it should 

be reason for concern that the performance of the model worsens with the out-of-sample horizon 

relative to a more parsimonious standard model. The empirical analysis in Eraker (2003) has certain 

similarities with ours, in the sense that he investigates the out-of-sample performance of jump models 

while holding the parameters fixed for long periods. Interestingly, he finds that the performance of the 

models worsens with the out-of-sample horizon, but not necessarily more so than that of a standard 

continuous time model without jumps. In parallel to our result, he finds that adding various types of 

jumps to a stochastic volatility model does not improve the model’s ability to fit observed option 

values very much. 
 
 
4. Summary and Directions for Future Work  
 

This paper presents a new option valuation model with analytical solutions based on a return 

dynamic that contains conditional skewness as well as conditional heteroskedasticity and a leverage 

effect. We call this model the Inverse Gaussian GARCH model. The model nests a standard GARCH 

model, which contains Gaussian innovations, and the empirical comparison between our new model 

and the standard GARCH model investigates the importance of modeling conditional skewness. 

 23



Because the model has a diffusion limit as well as a pure jump limit, such a comparison is also 

indicative of the incremental value of modeling jumps in returns and volatility in addition to stochastic 

volatility. Our empirical results are mixed: on the positive side, our new model achieves a better fit 

than standard models in-sample and up to ten weeks out-of-sample. Also, it performs well out-of-

sample for deep in-the-money call options (deep out-of-the-money puts). On the negative side, it 

performs worse than the standard GARCH model for longer out-of-sample periods and for several 

other types of options.  
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Technical Appendix  

Appendix A: Derivation of the Generating Function 

 The dynamics of volatility (4) are particularly convenient because they yield an easily 

calculated generating function for the spot price. We guess the generating function takes the form 

  f(t;φ)  =  Et[(S(T)φ]  = S(t)φexp(A(t)+B(t)h(t+∆)), (A1) 

where it is understood that f(t;φ)=f(t;T,φ), A(t)=A(t;T, φ), Β(t)=B(t;T, φ). At maturity t = T the 

coefficients must satisfy 

  A(T)  =  B(T)  =  0. (A2) 

Applying the law of iterated expectations using the dynamics in equation (4) shows 

  f(t;φ)  =  Et[f(t+∆;φ)]  = (A3) 

Et[S(t+∆)φexp(φ(r∆+νh(t+∆)+ηy(t+∆))+A(t+∆)+B(t+∆)(w+bh(t+∆)+cy(t+∆)+ah(t+∆)2/y(t+∆))]. 

Solving this expectation and equating coefficients demonstrates  

 A(t)  =  A(t+∆)+φr∆+wB(t+∆)-½ln(1-2aη4B(t+∆)), (A4) 

 B(t)  =  bB(t+∆)+φν+η-2-η-2 )ηφ2−)∆+(2−))(1∆+(η− tcBtBa21( 4 , 

Appendix B: Derivation of the Risk-Neutral Distribution and Process 

According to equation (4) the spot price S(t+∆) equals exp(µ+ηy(t+∆)), where µ = 

ln(S(t))+r∆+νh(t+∆) and y(t+∆) has an Inverse Gaussian distribution with degrees of freedom δ. 

Hence the density for S(t+∆) is log-Inverse-Gaussian 

 p(S(t+∆))  = (B1) 
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δ η

2π(ln(S(t+∆))-µ)3/2S(t+∆)
exp({ (ln(S(t+∆))-µ)/η-δ/ (ln(S(t+∆))-µ)/η}2). 

The easiest way to derive the result is to assume the risk-neutral density satisfies 

  γ))()/∆+((β))∆+((  =  ))∆+
~

tStS~tSp(S(t*p  (B2) 

The current values of a bond and stock must equal their discounted expected state-prices  

  ]))(/)((~E[1  e
~-r γβ tStS ∆+×=∆ , (B3) 

  ]))(/)((~)E[S(t S(t)
~γβ tStS ∆+×∆+= . 

Using the generating function, the solution is  

    =  (ηγ~  -1-(1+ν2η3/2)2/(ν2η3))/2, (B4) 

  ).γ2−1δ+δ−)∆+(νγ−∆γ=β ~th~r~exp(- ~
 

Substituting these values into the equation (B2) shows the risk-neutral distribution is log-Inverse-

Gaussian with corresponding risk-neutral parameters η* and δ*(t+∆). 

Appendix C: An Alternative Representation of the Return Dynamic 

 To provide more intuition for the risk neutralization, consider the parameter combination θ(t) = 

δ(t)η1/2 = h(t)η3/2. We can rewrite the dynamics (4a,b) in terms of this parameter 

  log(S(t+∆)/(S(t))  =  r∆ + νθθ(t+∆) + ε(t+∆), (C1) 

  θ(t+∆)  =  wθ + bθ(t) + cθε(t) + aθθ(t)2/ε(t), 

where 

   θ(t)  =  η-3/2h(t), νθ  =  η3/2ν, ε(t)  =  ηy(t), 

    wθ  =  η-3/2w, cθ  =  η-5/2c,  aθ  =  η5/2a, 
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and ε(t) has an inverse Gaussian distribution with scale parameter η and degrees of freedom parameter 

δ(t) = θ(t)η-1/2.  

 Interestingly θ(t) is the same in the true and risk-neutral probabilities. Moreover, the dynamic 

(C1) still holds under the risk-neutral measure with the same parameters νθ, wθ, b, cθ, and aθ. The only 

difference between the true and risk-neutral dynamic is that the innovation ε*(t) is distributed Inverse 

Gaussian with scale parameter 

 η*  =  νθ
2/(1+ ½νθ

2)2. (C2) 

If we define the risk-neutral variance as h*(t) = η*3/2θ(t) then the risk-neutral dynamics in equation 

(15a,b) follow directly from the dynamics of θ(t). It can also be seen that (C2) is equivalent to (14). 

However, (C2) provides us with extra intuition because it can now be seen that the option value 

depends on the path of spot prices, the riskless rate, and the five parameters νθ, wθ, b, cθ, and aθ, which 

means that compared with the parameterization of the dynamic in (4), one parameter has been 

eliminated from the pricing formula. The option value can be expressed without the parameter η∗, just 

as the Black-Scholes formula does not depend on the true statistical mean return, and in both cases this 

is due to the presence of the riskless rate in the pricing formula.   
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Figure 1:  Standardized Reflected Inverse Gaussian densities with varying skewness 
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Figure 2: Standardized Inverse Gaussian random walks with varying skewness 
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Figure 3: Comparing Heston-Nandi and IG GARCH option prices  
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Figure 4: Average Implied Volatility Smiles. Data and Models 
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Figure 5: Weekly average Black-Scholes implied volatility in and out-of-sample 
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Figure 6: Cumulative RMSE across weeks. Heston-Nandi and Inverse Gaussian GARCH models 
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Figure 7: Cumulative RMSE across weeks. Heston-Nandi and Inverse Gaussian GARCH models 
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Figure 8: Volatility paths for the Heston-Nandi and Inverse Gaussian GARCH models 
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DTM < 20 20<DTM<80 80<DTM<180 Total
S/X < .975 85 982 1,057 2,124
.975 < S/X < 1.00 132 510 332 974
1.00 < S/X < 1.025 132 490 327 949
1.025 < S/X < 1.05 114 468 295 877
1.05 < S/X < 1.075 109 402 252 763
1.075 < S/X 204 725 603 1,532
Total 776 3,577 2,866 7,219

DTM < 20 20<DTM<80 80<DTM<180 All
S/X < .975 0.94 2.66 7.23 4.87
.975 < S/X < 1.00 2.70 7.36 15.89 9.64
1.00 < S/X < 1.025 8.01 12.97 22.07 15.41
1.025 < S/X < 1.05 15.43 19.90 28.40 22.18
1.05 < S/X < 1.075 23.15 27.14 34.89 29.13
1.075 < S/X 41.17 43.25 50.84 45.96
All 18.26 17.97 23.71 20.28

DTM < 20 20<DTM<80 80<DTM<180 All
S/X < .975 0.1789 0.1649 0.1861 0.1760
.975 < S/X < 1.00 0.1653 0.1772 0.2066 0.1856
1.00 < S/X < 1.025 0.1939 0.1990 0.2258 0.2076
1.025 < S/X < 1.05 0.2353 0.2270 0.2437 0.2337
1.05 < S/X < 1.075 0.3031 0.2562 0.2639 0.2655
1.075 < S/X 0.4543 0.3261 0.3058 0.3352
All 0.2773 0.2224 0.2310 0.2317

Table 1. In-Sample Options Data (1990-1992)

Panel A. Number of Call Option Contracts

Panel B. Average Call Price

Panel C. Average Implied Volatility from Call Options
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Table 2: Maximum Likelihood Estimates of the Statistical Models of Returns 

Annualized Leverage Log 
Gaussian Models λ ω β α γ Persistence Volatility Correlation Likelihood

Homoskedastic 3.106E+00 9.520E-05 0.1549 10531.6
  Std Errors 1.799E+00 1.297E-06

Heston-Nandi 2.772E+00 3.038E-09 9.026E-01 3.660E-06 1.284E+02 0.9629 0.1577 -0.87461 10872.4
  Std Errors 1.826E+00 2.336E-04 9.370E-03 4.841E-07 1.731E+01

Annualized Leverage Log 
IG Models ν w b a c η Persistence Volatility Correlation Likelihood

Homoskedastic 3.587E+03 9.487E-05 -2.790E-04 0.1546 10539.2
  Std Errors 4.604E+02 1.352E-06 3.590E-05

GARCH 1.625E+03 3.768E-10 -1.933E+01 2.472E+07 4.142E-06 -6.162E-04 0.9620 0.1538 -0.87429 10911.6
  Std Errors 1.714E+00 8.621E-05 5.240E-06 2.186E+01 1.356E-09 1.356E-09

Sample: Daily S&P 500 Returns from January 3, 1989 to December 30, 2001
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Gaussian Models Annualized Leverage Option
ω β α γ* Persistence Volatility Correlation RMSE

Black-Scholes 1.108E-04 0.1671 2.0185
  Std Errors 5.827E-07
Heston-Nandi 4.853E-15 5.771E-01 2.386E-07 1.329E+03 0.9985 0.2003 -0.9991 1.0043
  Std Errors 6.382E-09 7.856E-03 1.478E-11 1.236E+01

IG Models Annualized Leverage Option
w* b a* c* η* Persistence Volatility Correlation RMSE

Homoskedastic 8.704E-05 -3.983E-02 0.1481 1.7346
  Std Errors 5.174E-07 8.934E-04
GARCH 4.852E-15 4.824E-01 2.454E+04 1.473E-06 -1.848E-03 0.9975 0.1685 -0.9982 0.9586
  Std Errors 7.475E-09 5.508E-04 1.715E+02 1.249E-11 9.390E-09

Gaussian Models Annualized Leverage Option
ω β α γ* Persistence Volatility Correlation RMSE

Black-Scholes 1.054E-04 0.1630 0.7894
  Std Errors 2.215E-06
Heston-Nandi 2.380E-15 7.787E-01 3.088E-07 8.415E+02 0.9974 0.1727 -0.9970 0.6072
  Std Errors 4.600E-08 2.506E-02 3.861E-11 4.800E+01

IG Models Annualized Leverage Option
w* b a* c* η* Persistence Volatility Correlation RMSE

Homoskedastic 7.745E-05 -9.519E-03 0.1397 0.7417
  Std Errors 1.552E-06 8.902E-04
GARCH 8.364E-14 1.245E-01 5.690E+04 2.666E-06 -2.081E-03 0.9867 0.1422 -0.9768 0.5702
  Std Errors 1.132E-07 7.197E-03 5.390E+02 3.017E-09 1.603E-05

Table 3. Risk Neutral Parameters from Options

Panel B. Sample: 776 Contracts with less than 20 Days to Maturity

Panel A. Sample: 7,219 S&P 500 Wednesday Close Call Options. January 1, 1990 - December 31, 1992

 



 

DTM < 20 20<DTM<80 80<DTM<180 All
S/X < .975 0.2149 0.8469 1.3420 1.0680
.975 < S/X < 1.00 0.4781 1.1612 1.3124 1.1201
1.00 < S/X < 1.025 0.3454 0.9464 1.0996 0.9156
1.025 < S/X < 1.05 0.2984 0.7860 0.9689 0.7841
1.05 < S/X < 1.075 0.4596 0.9023 1.1601 0.9242
1.075 < S/X 0.4065 1.0799 1.3162 1.0832
All 0.3789 0.9508 1.2511 1.0086

DTM < 20 20<DTM<80 80<DTM<180 All
S/X < .975 0.1891 0.7123 1.0143 0.8417
.975 < S/X < 1.00 0.4378 1.0857 1.2118 1.0409
1.00 < S/X < 1.025 0.3224 0.9050 1.0939 0.8890
1.025 < S/X < 1.05 0.2660 0.7351 1.0471 0.7790
1.05 < S/X < 1.075 0.4147 0.8261 1.2793 0.9170
1.075 < S/X 0.4094 1.0251 1.2942 1.0490
All 0.3550 0.8711 1.1318 0.9191

DTM < 20 20<DTM<80 80<DTM<180 All
S/X < .975 0.8799 0.8411 0.7558 0.7881
.975 < S/X < 1.00 0.9157 0.9350 0.9234 0.9292
1.00 < S/X < 1.025 0.9334 0.9563 0.9947 0.9710
1.025 < S/X < 1.05 0.8913 0.9352 1.0807 0.9935
1.05 < S/X < 1.075 0.9022 0.9156 1.1028 0.9922
1.075 < S/X 1.0070 0.9492 0.9833 0.9684
All 0.9369 0.9162 0.9047 0.9113

Parameters Estimated Using All Contracts
Table 4. In-Sample MSE by Maturity and Moneyness

Panel A. Heston-Nandi Model MSE

Panel B. Inverse Gauss GARCH Model MSE

Panel C. Ratio of Inverse Gauss GARCH to Heston-Nandi MSEs
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DTM < 20 20<DTM<80 80<DTM<180 All
S/X < .975 -0.0647 -0.3739 -0.4294 -0.3891
.975 < S/X < 1.00 -0.2006 -0.4044 -0.2551 -0.3259
1.00 < S/X < 1.025 0.0041 -0.0721 0.0456 -0.0209
1.025 < S/X < 1.05 0.3127 0.3040 0.2627 0.2912
1.05 < S/X < 1.075 0.5297 0.5680 0.5970 0.5721
1.075 < S/X 0.5414 0.7888 0.8073 0.7631
All 0.2222 0.0933 0.0667 0.0966

DTM < 20 20<DTM<80 80<DTM<180 All
S/X < .975 0.0166 -0.3273 -0.2803 -0.2901
.975 < S/X < 1.00 -0.1922 -0.4500 -0.2113 -0.3337
1.00 < S/X < 1.025 -0.0964 -0.1672 0.0910 -0.0684
1.025 < S/X < 1.05 0.2415 0.2040 0.2950 0.2395
1.05 < S/X < 1.075 0.4776 0.4770 0.6175 0.5235
1.075 < S/X 0.5318 0.7374 0.7899 0.7307
All 0.1951 0.0528 0.1334 0.1001

DTM < 20 20<DTM<80 80<DTM<180 All
S/X < .975 -0.0326 -0.7787 -0.7919 -0.7554
.975 < S/X < 1.00 -0.3369 -0.6579 -0.0284 -0.3998
1.00 < S/X < 1.025 0.1171 0.0793 0.9226 0.3751
1.025 < S/X < 1.05 0.4720 0.8004 1.5793 1.0197
1.05 < S/X < 1.075 0.6294 1.1167 2.1564 1.3905
1.075 < S/X 0.5785 1.1693 2.0436 1.4348
All 0.2689 0.1705 0.5921 0.3484

Table 5. In-Sample Bias by Maturity and Moneyness
Parameters Estimated Using All Contracts

Panel A. Heston-Nandi Model Bias

Panel B. Inverse Gauss GARCH Model Bias

Panel C. Black-Scholes Model Bias
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DTM < 20 20<DTM<80 80<DTM<180 Total
S/X < .975 3 295 281 579
.975 < S/X < 1.00 46 249 115 410
1.00 < S/X < 1.025 53 230 118 401
1.025 < S/X < 1.05 47 222 115 384
1.05 < S/X < 1.075 43 195 97 335
1.075 < S/X 97 463 316 876
Total 289 1,654 1,042 2,985

DTM < 20 20<DTM<80 80<DTM<180 All
S/X < .975 0.45 1.65 3.81 2.69
.975 < S/X < 1.00 1.69 5.60 11.86 6.92
1.00 < S/X < 1.025 7.88 12.35 19.21 13.77
1.025 < S/X < 1.05 17.69 20.90 27.27 22.42
1.05 < S/X < 1.075 27.74 29.71 35.59 31.16
1.075 < S/X 49.11 49.80 56.38 52.10
All 25.21 23.11 27.93 24.99

DTM < 20 20<DTM<80 80<DTM<180 All
S/X < .975 0.1044 0.1067 0.1187 0.1125
.975 < S/X < 1.00 0.1106 0.1205 0.1413 0.1253
1.00 < S/X < 1.025 0.1463 0.1438 0.1596 0.1488
1.025 < S/X < 1.05 0.2031 0.1722 0.1772 0.1775
1.05 < S/X < 1.075 0.2689 0.2003 0.1957 0.2077
1.075 < S/X 0.4586 0.2838 0.2433 0.2885
All 0.2725 0.1833 0.1773 0.1898

Table 6. Out of Sample Options Data (1993)

Panel A. Number of Call Option Contracts

Panel B. Average Call Price

Panel C. Average Implied Volatility from Call Options
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Gaussian Models In-Sample (1990-1992) Out-of-Sample (1993)

Black-Scholes 2.0185 2.7325

Heston-Nandi 1.0043 1.0778

IG Models

Homoskedastic 1.7346 2.5079

GARCH 0.9586 1.3611

Gaussian Models In-Sample (1990-1992) Out-of-Sample (1993)

Black-Scholes 0.7894 1.0998

Heston-Nandi 0.6072 0.8193

IG Models

Homoskedastic 0.7417 1.0815

GARCH 0.5702 0.8438

RMSE

Table 7. In-Sample and Out-of-Sample RMSE

RMSE

Panel A. Sample: S&P 500 Wednesday Close Call Options

Panel B. Sample: Contracts with less than 20 Days to Maturity
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DTM < 20 20<DTM<80 80<DTM<180 All
S/X < .975 0.0528 1.0567 1.1755 1.1091
.975 < S/X < 1.00 0.2815 1.9720 2.6395 1.9696
1.00 < S/X < 1.025 0.2459 1.2249 1.8870 1.2903
1.025 < S/X < 1.05 0.3580 0.5323 1.2696 0.7318
1.05 < S/X < 1.075 0.4340 0.4326 0.7333 0.5199
1.075 < S/X 1.3154 1.3343 0.9482 1.1929
All 0.6547 1.1516 1.3179 1.1616

DTM < 20 20<DTM<80 80<DTM<180 All
S/X < .975 0.1140 1.9767 2.4794 2.2110
.975 < S/X < 1.00 0.5762 3.5674 5.0556 3.6492
1.00 < S/X < 1.025 0.4089 2.4676 3.8295 2.5962
1.025 < S/X < 1.05 0.3021 0.9580 2.5487 1.3541
1.05 < S/X < 1.075 0.3594 0.4874 1.3025 0.7070
1.075 < S/X 1.3154 1.1897 0.8820 1.0926
All 0.7120 1.7518 2.3303 1.8531

DTM < 20 20<DTM<80 80<DTM<180 All
S/X < .975 2.1598 1.8707 2.1092 1.9935
.975 < S/X < 1.00 2.0473 1.8090 1.9154 1.8528
1.00 < S/X < 1.025 1.6627 2.0145 2.0294 2.0121
1.025 < S/X < 1.05 0.8439 1.7996 2.0075 1.8504
1.05 < S/X < 1.075 0.8281 1.1266 1.7762 1.3599
1.075 < S/X 1.0000 0.8916 0.9302 0.9159
All 1.0874 1.5212 1.7681 1.5953

Panel B. Inverse Gauss GARCH Model MSE

Panel C. Ratio of Inverse Gauss GARCH to Heston-Nandi MSEs

Table 8. Out-of-Sample MSE by Maturity and Moneyness
Parameters Estimated Using All Contracts

Panel A. Heston-Nandi Model MSE
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