A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Graph-Based Image Segmentation for Road Extraction from Post-Disaster Aerial Footage
2022
Drones
This research effort proposes a novel method for identifying and extracting roads from aerial images taken after a disaster using graph-based image segmentation. The dataset that is used consists of images taken by an Unmanned Aerial Vehicle (UAV) at the University of West Florida (UWF) after hurricane Sally. Ground truth masks were created for these images, which divide the image pixels into three categories: road, non-road, and uncertain. A specific pre-processing step was implemented, which
doi:10.3390/drones6110315
fatcat:a4vcugsckvfnxakyohvdfrcbtm