iPhone 4s Photoplethysmography: Which Light Color Yields the Most Accurate Heart Rate and Normalized Pulse Volume Using the iPhysioMeter Application in the Presence of Motion Artifact?

Kenta Matsumura, Peter Rolfe, Jihyoung Lee, Takehiro Yamakoshi, Derek Abbott
2014 PLoS ONE  
Recent progress in information and communication technologies has made it possible to measure heart rate (HR) and normalized pulse volume (NPV), which are important physiological indices, using only a smartphone. This has been achieved with reflection mode photoplethysmography (PPG), by using a smartphone's embedded flash as a light source and the camera as a light sensor. Despite its widespread use, the method of PPG is susceptible to motion artifacts as physical displacements influence photon
more » ... propagation phenomena and, thereby, the effective optical path length. Further, it is known that the wavelength of light used for PPG influences the photon penetration depth and we therefore hypothesized that influences of motion artifact could be wavelength-dependant. To test this hypothesis, we made measurements in 12 healthy volunteers of HR and NPV derived from reflection mode plethysmograms recorded simultaneously at three different spectral regions (red, green and blue) at the same physical location with a smartphone. We then assessed the accuracy of the HR and NPV measurements under the influence of motion artifacts. The analyses revealed that the accuracy of HR was acceptably high with all three wavelengths (all rs . 0.996, fixed biases: 20.12 to 0.10 beats per minute, proportional biases: r = 20.29 to 0.03), but that of NPV was the best with green light (r = 0.791, fixed biases: 20.01 arbitrary units, proportional bias: r = 0.11). Moreover, the signal-to-noise ratio obtained with green and blue light PPG was higher than that of red light PPG. These findings suggest that green is the most suitable color for measuring HR and NPV from the reflection mode photoplethysmogram under motion artifact conditions. We conclude that the use of green light PPG could be of particular benefit in ambulatory monitoring where motion artifacts are a significant issue.
doi:10.1371/journal.pone.0091205 pmid:24618594 pmcid:PMC3949790 fatcat:emtn7kmmebeuxfbcab23m2butu