A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
The Structure of Root Data and Smooth Regular Embeddings of Reductive Groups
2018
Proceedings of the Edinburgh Mathematical Society
AbstractWe investigate the structure of root data by considering their decomposition as a product of a semisimple root datum and a torus. Using this decomposition, we obtain a parametrization of the isomorphism classes of all root data. By working at the level of root data, we introduce the notion of a smooth regular embedding of a connected reductive algebraic group, which is a refinement of the commonly used regular embeddings introduced by Lusztig. In the absence of Steinberg endomorphisms,
doi:10.1017/s0013091518000597
fatcat:e4tncxztwrea7idx6372a7xc7u