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Expanded and Activated Natural Killer Cells for
Immunotherapy of Hepatocellular Carcinoma
Takahiro Kamiya, Yu-Hsiang Chang, and Dario Campana

Abstract

Viral infection of the liver is a major risk factor for hepatocel-
lular carcinoma (HCC). Natural killer (NK) cells recognize virally
infected and oncogenically transformed cells, suggesting a ther-
apeutic role for NK-cell infusions in HCC. Using the K562-mb15-
41BBL cell line as a stimulus, we obtained large numbers of
activated NK cells from the peripheral blood of healthy donors.
Expanded NK cells exerted remarkably high cytotoxicity against
HCC cell lines, which was generally much higher than that of
unstimulated or IL2-activated NK cells. In immunodeficient
NOD/scid IL2RGnull mice engrafted with Hep3B, treatment with
expanded NK cells markedly reduced tumor growth and
improved overall survival. HCC cells exposed for 48 hours to
5 mmol/L of sorafenib, a kinase inhibitor currently used for HCC
treatment, remained highly sensitive to expanded NK cells. HCC

cell reductions of 39.2% to 53.8%caused by sorafenib in three cell
lines further increased to 80.5% to 87.6% after 4 hours of culture
with NK cells at a 1:1 effector-to-target ratio. NK-cell cytotoxicity
persisted even in the presence of sorafenib. We found that
NKG2D, an NK-cell–activating receptor, was an important medi-
ator of anti-HCC activity. We therefore enhanced its signaling
capacity with a chimeric NKG2D-CD3z-DAP10 receptor. This
considerably increased the anti-HCC cytotoxicity of expanded
NK cells in vitro and in immunodeficient mice. The NK expansion
and activation method applied in this study has been adapted to
clinical-grade conditions. Hence, these results warrant clinical
testing of expanded NK-cell infusions in patients with HCC,
possibly after genetic modification with NKG2D-CD3z-DAP10.
Cancer Immunol Res; 4(7); 574–81. �2016 AACR.

Introduction
Hepatocellular carcinoma (HCC), the second most common

cause of death from cancer worldwide (1), typically arises from a
background of chronic liver inflammation caused by hepatitis B
virus (HBV) or hepatitis C virus (HCV) infection (2–4). For HBV
(aDNAvirus), there is also evidence of viral integration, leading to
expression of HBV-associated antigens in tumor cells (5–7). Early
stage HCC can be cured by tumor ablation, resection, or liver
transplantation, but most patients have more advanced disease
at diagnosis (8, 9). For these patients and for those who relapse
after liver transplant, current treatment is aimed at prolonging
survival, with a median life expectancy of about 8 to 11 months
(8, 9). It is clear that significant improvements in clinical
outcome can come only from novel therapies capable of
eluding HCC drug resistance.

Interest is growing in the use of immunotherapy for cancer,
bolstered by the remarkable responses obtained with immune
checkpoint inhibitors andwith chimeric antigen receptor–directed

T lymphocytes (10, 11). InHCC, a number of immunotherapeutic
approaches have been explored, including theuseof cytokines and
chemokines, tumor vaccines, and PD-1 or CTLA-4 blockade (12,
13). Because HCC cells can express HBV-derived peptides, as well
as oncofetal proteins and cancer-testis antigens, adoptive immu-
notherapy using T lymphocytes redirected with T-cell receptors
(TCR) against these peptides represents an attractive possibility.
Indeed, T cells expressing TCR anti-HBV envelope antigens are
cytotoxic againstHCC cell lines (14, 15); infusion of such cells in a
patient with HCC resulted in their in vivo expansion and a reduc-
tion in hepatitis B surface antigen (HBsAg) without apparent liver
toxicity (16). A practical constraint of this approach is that TCRs
must be tailored to thepatient'sHLA type,whichmay limit patient
eligibility if HLA-matched TCRs are not available. The risk of graft-
versus-host disease (GvHD) or rapid rejection needs to be averted,
so this approach requires the use of autologous T cells, whichmay
be functionally impaired in patients.

Natural killer (NK) cells can recognize virally infected or
transformed cells based on their expression of ligands for inhib-
itory and stimulatory NK receptors (17). Allogeneic NK cells have
marked clinical antitumor activity in acute leukemia without
causing GvHD or liver toxicity (18–21). Results of clinical trials
in which cytokine-activated autologous lymphocytes containing
mostly NK cells were infused in patients with HCC after ablation
or resection (22, 23) indicate that this approach warrants further
exploration.

Human NK cells can be activated and expanded ex vivo by
coculture with the K562-mb15-41BBL cell line, yielding an
abundance of highly cytotoxic NK cells (24, 25). In this study,
we tested the capacity of these NK cells to exert cytotoxicity
against HCC cells in vitro and in xenograft models, assessed
their activity in the context of sorafenib treatment, and deter-
mined whether genetic modification of NK cells with a chimeric

Department of Pediatrics,Yong Loo Lin School of Medicine, National
University of Singapore, Singapore.

Note: Supplementary data for this article are available at Cancer Immunology
Research Online (http://cancerimmunolres.aacrjournals.org/).

Current address for Yu-Hsiang Chang: Department of Pediatrics, Kaohsiung
Veterans General Hospital, Kaohsiung, Taiwan.

CorrespondingAuthor:DarioCampana, Department of Pediatrics, Yong LooLin
School of Medicine, National University of Singapore, Centre for Translational
Medicine, 14 Medical Drive, Level 9 South, 117599 Singapore. Phone: 65-6601-
2666; Fax: 65-6779-7486; E-mail: paedc@nus.edu.sg

doi: 10.1158/2326-6066.CIR-15-0229

�2016 American Association for Cancer Research.

Cancer
Immunology
Research

Cancer Immunol Res; 4(7) July 2016574

on September 26, 2017. © 2016 American Association for Cancer Research. cancerimmunolres.aacrjournals.org Downloaded from 

Published OnlineFirst May 13, 2016; DOI: 10.1158/2326-6066.CIR-15-0229 

http://cancerimmunolres.aacrjournals.org/


receptor that enhances NK activation signals could further
augment anti-HCC cytotoxicity.

Materials and Methods
Tumor cell lines

The human HCC cell lines Hep3B, SNU-398, HepG2, SNU-
449, and PLC/PRF/5 were purchased from the American Type
Culture Collection (ATCC) in May–December 2012. Cell lines
were maintained in either DMEM (HyClone; GE Healthcare;
for Hep3B, HepG2, and PLC/PRF/5) or RPMI-1640 (Thermo
Fisher; SNU-398 and -449); media were supplemented with
10% FBS (GE Healthcare) and antibiotics. Cells from early
passages (fewer than 6 months from receipt or thawing) were
used for all described experiments. For the visualization of
injected tumor cells in immunodeficient mice, we transduced
the Hep3B cell line with a murine stem cell virus (MSCV)-
internal ribosome entry site (IRES)-GFP retroviral vector (from
the Vector Development and Production Shared Resource of St.
Jude Children's Research Hospital, Memphis, TN) containing
the firefly luciferase gene. Transduced cells were selected for
their expression of GFP with a MoFlo cell sorter (Beckman
Coulter). The luciferase-positive HepG2 cell line was obtained
from Dr. A. Bertoletti (Duke-NUS, Singapore) in June 2012 and
its origin validated by DNA fingerprinting (DSMZ). The acute
leukemia cell line K562 (obtained from the ATCC in April
2014) was grown in RPMI-1640 and 10% FBS. Expression of
HLA class I was tested using an antibody to human HLA-ABC
conjugated to phycoerythrin (PE; G46-2.6; BD Biosciences).
Expression of NKG2D ligands was tested with an NKG2D-IgFc
chimeric probe (R&D) followed by a goat-anti–human IgG
conjugated to PE (Southern Biotechnology Associates). Bind-
ing was visualized using an Accuri C6 flow cytometry (BD
Biosciences).

Human NK-cell expansion
Peripheral blood samples were obtained from discarded

anonymized byproducts of platelet donations from healthy
adult donors at the National University Hospital Blood Bank,
Singapore.

Mononucleated cells were separated by centrifugation on a
Lymphoprep density step (Nycomed) andwashed twice in RPMI-
1640. To purify primary NK cells from peripheral blood mono-
nucleated cells, we used the NK Cell Isolation Kit from Miltenyi.
To expand NK cells, we cocultured mononuclear cells and the
genetically modified K562-mb15-41BBL cell line made in our
laboratory as previously described (24, 25). Briefly, peripheral
blood mononucleated cells (3 � 106) were cultured in a 6-well
tissue culture plate with 2� 106 irradiated (100 Gy) K562-mb15-
41BBL cells in SCGM medium (CellGenix) containing 10% FBS
and40 IU/mLhuman IL2 (Novartis). Every 2 to3days, fresh tissue
culture medium and IL2 were added. After 7 days of coculture,
residual T cells were removed using Dynabeads CD3 (Thermo
Fisher), producing cell populations containing >90% CD56þ

CD3� NK cells. Expanded NK cells were maintained in SCGM
with FBS, antibiotics, and 400 IU/mL IL2 for up to 9 days before
the experiments.

In some experiments, an aliquot of peripheral blood mono-
nucleated cells was used to obtain lymphocytes; T lymphocytes
were activated by stimulation with Dynabeads Human T-Activa-
tor CD3/CD28 Thermo Fisher) for 7 days.

Retrovirus production and NK-cell transduction
The RD114-pseudotyped MSCV retrovirus containing the

NKG2D-CD3z-IRES-DAP10 construct, composed of the cDNA
encodingNKG2D, the intracellular domain of CD3z, andDAP10,
was previously described (26). To transduce NK cells, retroviral
vector-conditioned medium was added to RetroNectin (Takara)-
coated polypropylene tubes; after centrifugation and removal of
the supernatant, expanded NK cells (5 � 105) were added to the
tubes and left at 37�C for 12 hours; fresh viral supernatant was
addedon2other successive days (26). Cellswere thenmaintained
in SCGM with FBS, antibiotics, and 400 IU/mL of IL2 until the
time of the experiments, 3 to 10 days after transduction. Surface
expression of NKG2D was analyzed by flow cytometry using an
anti-human NKG2D antibody conjugated to PE or peridinin
chlorophyll protein (PerCP; R&D).

Cytotoxicity assays
Target cells were suspended in RPMI-1640 with 10% FBS,

labeled with calcein AM, and plated into 96-well flat bottom
plates (Costar). The plates were placed in an incubator for at
least 4 hours to allow for cell attachment before adding NK
cells. Primary and/or expanded NK cells, suspended in RPMI-
1640 with 10% FBS, were then added at various effector-to-
target (E:T) ratios as indicated in Results and cocultured with
target cells for 4 hours. At the end of the cultures, the super-
natant was removed, replaced with PBS, and the calcein AM
signal was measured using an FLx800 plate reader (BioTek). In
some tests, we used luciferase-labeled cells and measured cell
killing with the same plate reader after adding BrightGlo
(Promega) to the wells.

To block NKG2D binding to its ligands, we used a purified
nonconjugated antibody to NKG2D (149810; R&D). An isotype
matched nonreactive immunoglobulin (R&D) and CD56 anti-
body (N901; Beckman Coulter) were used as controls.

In some experiments, HCC cells were treated for 24 to 48 hours
with sorafenib (Selleckchem; 2–10 mmol/L). Cells were then
detached by treatment with trypsin, washed, and processed for
NK-cell cytotoxicity testing.

Xenograft model
Hep3B cells expressing luciferase were injected i.p. in NOD.Cg-

Prkdcscid IL2rgtm1Wjl/SzJ (NOD/scid IL2RGnull) mice (The Jack-
son Laboratory; 1� 106 permouse). NK cells were expanded for 7
days, resuspended in RPMI-1640 plus 10% FBS, and then injected
i.p. (1 � 107 cells per mouse) 7 days after HCC cells (Hep3B or
HepG2) injection. One to five additional injections of NK cells
were given within the following week; mice also received i.p.
injections of IL2 (20,000 IU each) 3 times per week. As a control, a
group of mice received tissue culture medium instead of NK cells.
In another experiment, we injected NK cells transduced with
NKG2D-DAP10-CD3z and mock-transduced NK cells, with
2 injections starting 7 days after HCC cell injection. HCC cell
engraftment and progression were evaluated using a Xenogen
IVIS-200 system (Caliper Life Sciences), with imaging beginning
5minutes after i.p. injection of an aqueous solution of D-luciferin
potassium salt (3 mg/mouse; Perkin Elmer). Photons emitted
from luciferase-expression cells were quantified using the Living
Image 3.0 software program. Mice were euthanized when biolu-
minescence reached 1 � 1010 (Hep3B) or 1 � 1011 photons/
second (HepG2), or earlier if they showed physical signs
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warranting euthanasia. All animal experiments were performed in
accordance with a protocol approved by the National University
of Singapore Institutional Animal Care and Use Committee.

Results
Expanded activated NK cells exert high cytotoxicity
against HCC cells

We determined the cytotoxic capacity of expanded NK cells
from 23 healthy donors against the HCC cell lines Hep3B, SNU-
398, HepG2, SNU-449, and PLC/PRF/5; we performed 110
experiments, each with multiple measurements at various E:T
ratios. Expanded NK cells were highly cytotoxic (Fig. 1A; Supple-
mentary Fig. S1). For example, at 2:1 E:T, mean (� SD) cytotox-
icity at 4hourswas89.4%�10.5%forHep3B, 82.8%�13.9%for
SNU-398, 75.2% � 9.7% for HepG2, 63.6% � 23.6% for SNU-
449, and 70.1% � 20.6% for PLC/PRF/5. When the assays were
prolonged to 24 hours, there was high cytotoxicity even at very
low E:T ratios: at 1:10, 73.9% � 2.0% for Hep3B, 51.7% � 4.6%
for SNU-449, and 47.2%� 8.1% for PLC/PRF/5; at 1:20, 70.7%�
1.6%, 39.7% � 4.7%, and 36.9% � 8.6%, respectively (Fig. 1B).
The range of cytotoxicity against HCC cells approached that
measured against the leukemia cell line K562, a highly sensitive
NK-cell target (Fig. 1A; Supplementary Fig. S1). This is remarkable
because, contrary to K562 cells, all HCC cell lines expressed HLA-
Class I molecules (Supplementary Fig. S2), which can engage
inhibitory receptors on NK cells (17).

To determine if the NK-cell expansion procedure by cocul-
ture with K562-mb15-41BBL cells resulted in an increased
NK-cell potency against HCC cells, we compared the cyto-
toxicity of expanded NK cells with that of purified NK cells
from the same donors prior to stimulation. As shown in Fig.
1C, expanded NK cells were much more effective (P < 0.0001
for each of the 5 cell lines analyzed by t test or two-way
ANOVA). Similarly, expanded NK cells were also more pow-
erful than purified NK cells stimulated overnight with 1,000
IU/mL of IL2 for all cell lines (P < 0.0001), with the exception
of SNU-398, which was equally sensitive to expanded or IL2-
stimulated NK cells (Fig. 1D).

Anti-HCC activity of expanded NK cells in a xenograft model
To further test the anti-HCC capacity of expanded NK cells, we

engrafted NOD/scid IL2RGnull mice with Hep3B cells expressing
the luciferase gene. Of the 14 mice injected with Hep3B cells, 9
received treatment with expanded NK cells 7 days after tumor
engraftment, whereas 5 received injections of medium alone.
Tumor expansion, as measured by in vivo imaging, occurred at
amuch slower rate in mice treated with NK cells. Thus, on day 14,
median tumor size relative tomeasurements onday7was 277.6%
in controlmice and 87.9% inNK-treatedmice; on day 21,median
percentages were 1,048.7% and 128.0%, respectively (P < 0.01 for
either comparison; Fig. 2A; Supplementary Fig. S3). In agreement
with these results, NK-cell treatment significantly improved over-
all survival (Fig. 2B; P < 0.001).
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Figure 1.

Cytotoxicity of expanded NK cells against HCC. A, symbols represent mean percentage of cytotoxicity measured at 4 hours in experiments with Hep3B (n ¼ 27),
SNU-398 (n ¼ 22), HepG2 (n ¼ 14), SNU-449 (n ¼ 22), and PLC/PRF/5 (n ¼ 25) at various E:T ratios using expanded NK cells from 23 donors. Shaded area
represents the range of cytotoxicity against K562 cells in 39 experiments. In each experiment, target cells cultured without NK cells were used as a reference.
Results of individual experiments are shown in Supplementary Fig. S1. B, results of 24-hour cytotoxicity assays at low E:T ratio. Symbols show mean (� SD)
percentage of cytotoxicity for Hep3B (n¼ 9), PLC/PRF/5 (n¼ 15), and SNU-449 (n¼ 9). C, cytotoxicity of expandedNK cells comparedwith that of unstimulated NK
cells from the same donor in 4-hour assays at various E:T ratios. Symbols indicate mean value of triplicate measurements for each cell line. Median values
are shown by horizontal bars. D, cytotoxicity of expanded NK cells comparedwith that of NK cells from the same donors (n¼ 3) stimulated with IL2 (1,000 IU/mL for
24 hours) in 4-hour assays. Symbols indicate the mean value of all measurements (n ¼ 9) for each cell line. Median values are shown by horizontal bars.
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These results were confirmed in experiments performed with
NOD/scid IL2RGnull mice engrafted with HepG2 cells. Signif-
icantly slower tumor growth and improved survival were
observed (Fig. 2C and D; Supplementary Fig. S3).

Interaction between expanded NK cells and sorafenib
Sorafenib is an important component of the contemporary

treatment of advanced HCC (27). In initial experiments, we
found that the IC50 of sorafenib after 48 hours was 4.27 mmol/L
for Hep3B, 7.74 mmol/L for SNU-449, and 6.81 mmol/L for PLC/
PRF/5 (Supplementary Fig. S4A). To compare the relative cyto-
toxicity of sorafenib and NK cells, and to determine whether
prior exposure to sorafenib would affect NK-cell activity, we
treated the 3 cell lines with 5 mmol/L of sorafenib for 48 hours,
washed the drug away, and added NK cells to the cultures for
another 4 hours. As shown in Fig. 3A, NK cells dramatically
increased the anti-HCC effects of sorafenib. When directly

compared with cells cultured for 48 hours with the sorafenib
vehicle only (DMSO 0.1% v/v), the NK sensitivity of cells
exposed to sorafenib remained essentially unchanged in SNU-
449 and was only slightly lower in Hep3B and PLC/PRF/5
(Supplementary Fig. S4B).

To determine whether NK-cell cytotoxicity was impaired by
sorafenib, we performed experiments in which sorafenib and
NK cells were added simultaneously to cultures of PLC/PRF/5
cells. The presence of NK cells in these cultures, even at a low E:
T ratio, significantly increased sorafenib cytotoxicity. For exam-
ple, mean (� SD) 24-hour cytotoxicity with 5 mmol/L of
sorafenib increased from 48.8% � 12.6% to 67.9% � 5.1%
with NK cells at 1:10 E:T and to 96.2% � 3.3% with NK cells at
1:1 E:T (n¼ 6; P < 0.01 for either comparison; Fig. 3B). Notably,
the presence of sorafenib at either 5 mmol/L or 10 mmol/L did
not affect the capacity of NK cells to exert cytotoxicity (Sup-
plementary Fig. S4C).
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Figure 2.

Antitumor capacity of expanded NK cells in immunodeficient mice. A,
luciferase-labeledHep3B cells (1� 106)were injected i.p. in 14NOD/scid
IL2RGnull mice. Seven days later, 9 mice were treated with 1 � 107

expanded NK cells, and 5 additional injections of NK cells (from the
same donor) were given within the next 7 days; 5 mice received
RPMI-1640 medium only instead of NK cells. All mice received i.p.
injections of IL2 (20,000 IU each) 3 times a week. Results of in vivo
imaging of tumor growth are shown. Each symbol corresponds to the
percentage of tumor growth calculated as follows: (bioluminescence
value recorded on day 14 or day 21/bioluminescence value recorded on
day 7) x 100. Bioluminescence was measured with a Xenogen IVIS-200
system, with imaging beginning 5 minutes after i.p. injection of D-
luciferin (3 mg/mouse), and analyzed with Living Image 3.0 software.
P values were calculated by t test. B, Kaplan–Meier curves indicate
overall survival in control and NK-treated mice engrafted with Hep3B
cells;P value by log-rank test is shown. C, luciferase-labeledHepG2 cells
(1 � 106) were injected i.p. in 21 NOD/scid IL2RGnull mice; 11 mice
received NK cells. Cell dosages, schedule, and estimates of tumor
growth were performed as described for A. D, Kaplan–Meier curves
indicate overall survival in control and NK-treated mice engrafted with
HepG2 cells; P value by log-rank test.
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Cytotoxicity of expanded NK cells against HCC cells exposed to
sorafenib. A, sequential cytotoxicity by sorafenib ("Sfn") and
expanded NK cells. HCC cells were cultured with 5 mmol/L of
sorafenib. After 48 hours, the number of viable cells was compared
with that of cells cultured with DMSO (0.05% v/v) used as vehicle.
Cells were then washed, and expanded NK cells were added to
determine 4-hour cytotoxicity. Symbols indicate mean (� SD)
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from 3 donors, with 3measurements each. B, cytotoxicity exerted by
sorafenib andexpandedNKcells. Sorafenib (5 or 10mmol/L) orDMSO
(0.1% v/v) vehicle and expanded NK cells were added to HCC cells;
HCC cell viability was measured after 24 hours. Symbols indicate
mean (�SD)percentageof cytotoxicity relative to cells culturedwith
DMSO and not exposed to NK cells; data are from experiments
with NK cells from 2 donors, with 3 measurements each.
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NKG2D is an important determinant of
NK-cell cytotoxicity against HCC. A, anti-
NKG2D, anti-CD56, or nonreactive mouse
IgGwere added to cocultures of expanded
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P values were calculated by paired t test.
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Antitumor capacity of NKG2D-CD3z-DAP10–transduced NK cells in immunodeficient mice engrafted with HCC cells. A, luciferase-labeled Hep3B cells
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received i.p. injections of IL2 (20,000 IU each) 3 times a week. Bioluminescence was measured with a Xenogen IVIS-200 system, with imaging beginning 5 minutes
after i.p. injection of D-luciferin (3 mg/mouse), and analyzed with Living Image 3.0 software. Tumor growth in each mouse was calculated as follows:
(bioluminescence value recorded on days 14–35/bioluminescence value recorded on day 7) x 100 (P value by t test); live imaging is shown in Supplementary
Fig. S9A. B, identical experimentswere performedwith immunodeficientmice engraftedwith luciferase-labeled HepG2 cells; live imaging is shown in Supplementary
Fig. S9B. C, Kaplan–Meier curves indicate overall survival in mice engrafted with HepG2 cells untreated (control) or treated with either mock-transduced
NK cells or NK cells transduced with NKG2D-CD3z-DAP10 receptors; P value calculated by log-rank test. NS, not statistically significant.
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Expression of NKG2D-CD3z-DAP10 augments NK-cell
cytotoxicity against HCC

Among the activating cell surface receptors that regulateNK-cell
function, NKG2D plays a key role (17, 28, 29). HCC cells
expressed ligands for NKG2D as shown by binding to a
NKG2D-IgFc chimeric probe (Supplementary Fig. S5). However,
24-hour incubation of expanded NK cells with supernatant col-
lected from 3- to 5-day cultures of the 5 HCC cell lines used did
not affect anti-NKG2D staining, suggesting that soluble NKG2D
ligands did not diminishNKG2D expression (Supplementary Fig.
S6), contrary to what had been previously reported in other
settings (30).

We found that addition of a blocking NKG2D antibody to
cocultures of expanded NK cells with the HCC cell lines Hep3B
and SNU-398 significantly inhibited cytotoxicity (Fig. 4A). Hav-
ing identified NKG2D as an important determinant of anti-HCC
activity, we tested whether increasing its signaling capacity would
augment NK-cell killing of HCC targets. Thus, we transduced
expanded NK cells with a chimeric receptor containing NKG2D
together with its signaling adaptor DAP10 and the additional
CD3z signaling domain, previously designed in our laboratory
(26). Transduction of expanded NK cells with the receptor sig-
nificantly increased NKG2D surface expression (Supplementary
Fig. S7). As shown in Fig. 4B, NK cells expressing the NKG2D-
CD3z-DAP10 receptor had considerably higher cytotoxicity
than mock-transduced NK cells in 4-hour cytotoxicity assays:
Median cytotoxicity was 75.5% for cells expressing NKG2D-
CD3z-DAP10 versus 59.1% for mock-transduced cells at 1:1 E:T
(P < 0.001). The advantage of the genetically modified NK cells
extended to assays performed at low E:T ratios (1:8 and 1:16)
for 24 hours (Fig. 4C). Expression of NKG2D-CD3z-DAP10 on
NK cells, however, did not increase their cytotoxicity against
autologous resting lymphocytes. Cell killing of autologous
activated T cells was slightly increased, although this amount
remained much lower than that measured against HCC cell
lines in parallel tests (Supplementary Fig. S8).

Finally, we tested whether NK cells expressing the NKG2D-
CD3z-DAP10 receptor were also more powerful than mock-
transduced cells in immunodeficient mice engrafted with either
Hep3B or HepG2 cells. In these experiments, only two infusions
of NK cells were administered, in contrast with six infusions in the
experiments with expanded NK cells shown in Fig. 2 and Sup-
plementary Fig. S3. Inmice engraftedwith theHep3B cell line, two
injections of expanded NK cells were insufficient to significantly
affect tumor growth (Fig. 5A; Supplementary Fig. S9A). In con-
trast, tumor growth was considerably reduced after injection of
the NKG2D-modified NK cells from the same donors. Although
none of the 5 untreated mice survived beyond day 70, 2 of the 4
mice treated with mock-transduced NK cells and 2 of 3 treated
with NKG2D-NK cells survived longer (106 and 135 days for
mock, 106 and 225 days for NKG2D). The superiority of NKG2D
NK cells was shown in another set of experiments with a larger
number of mice engrafted with the HepG2 cell line, in which two
infusions of NKG2D-NK cells reduced tumor growth and
improved survival (Fig. 5B and C; Supplementary Fig. S9B),
whereas mock-NK cells did not.

Discussion
The results of this study demonstrate that NK cells activated

and expanded by coculture with K562-mb15-41BBL cells can

effectively kill HCC cells. The range of cytotoxicity approached
that observed in assays with K562, a leukemia cell line regarded
as the gold-standard target for NK-cell cytotoxicity testing.
As we previously observed in studies with other tumor types
(25, 31), expanded NK cells were more powerful than non-
stimulated and IL2-stimulated cells from the same donors, and
were effective even at low E:T ratios. HCC killing was also
measurable in immunodeficient mice engrafted with HCC cells;
treatment with expanded NK cells reduced tumor expansion
and lengthened overall survival. High cytotoxicity against HCC
cannot be explained by lack of inhibitory killer immunoglob-
ulin-like receptor (KIR) engagement: In contrast with K562, all
HCC cell lines studied expressed HLA class I molecules that can
bind to KIR on the surface of NK cells (17). However, inter-
action of the activating receptor NKG2D with its ligands is
likely to be an important mechanism underlying the anti-HCC
capacity of expanded NK cells: NKG2D blockade reduced
cytotoxicity, and enforced expression of the NKG2D-CD3z-
DAP10 chimeric receptor further increased anti-HCC activity
in vitro and in vivo.

Correlative clinical studies have implicated NK cells in HCC
immunosurveillance. Thus, in patients with early-stage HCC,
an immune gene signature associated with T-cell and NK-cell
infiltration in resectedHCC tissuewas predictive of better survival
(32). Toll-like receptor 3 expression that correlated with the
degree of NK-cell infiltration was also a favorable predictor
(33). Conversely, loss of the NKG2D ligand ULBP-1 in HCC cells
was associated with shorter recurrence-free survival (34). In mice,
injection of a hepatotropic adeno-associated virus that delivered
IL15 and its receptor expanded the number of NK cells in the liver
and prolonged survival in a liver metastatic murine HCC model,
whereas depletion of NK cells eliminated the therapeutic effect
(35). These data suggest that NK cells are an important compo-
nent of the HCC microenvironment and might contribute to the
control tumor progression. In line with this concept, it was
previously reported that NK cells obtained from donor liver
perfusates were significantly more cytotoxic against HepG2 cells
than peripheral blood NK cells (36). The cytotoxicity against
HepG2 cells exerted by our expanded peripheral blood NK cells
(mean, 75.2% at 2:1 E:T in 4-hour assays) exceeded that reported
for liver NK cells at the same E:T (<60%), even when liver NK cells
were stimulated by 4 days of culture with IL2 (36). Besides their
use outside the liver transplant context, peripheral blood NK cells
would have a practical advantage in a clinical setting. By coculture
with K562-mb15-41BBL cells, peripheral blood NK cells can be
reliably propagated from cryopreserved apheresis products, thus
facilitating their collection and infusion scheduling.

Clinical studies have suggested that infusions of immune cells
may be beneficial as adjuvant therapy in patients with HCC. To
this end, Cui and colleagues (22) reported results of a study in
which cytokine-activated autologous lymphocytes were admin-
istered to patients with HCC after tumor ablation with radio-
frequency; median progression-free survival in a control group
receiving ablation was 12 months, whereas it had not been
reached at the time of the analysis for the group of patients
receiving ablation plus cell therapy. Lee and colleagues (23)
infused a similar cell product in patients with HCC after ablation
or surgical resection; the median time of recurrence-free survival
was 44months in patients receiving lymphocyte infusions and 30
months in the control group. Preclinical studies in vitro and in
animalmodels suggest thatmuch of the antitumor activity in such
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cell products is mediated by NK cells (36, 37). Based on our
results, the antitumor potential of expanded NK cells, particularly
when armed with NKG2D-CD3z-DAP10 receptors, should be
much higher than that of cytokine-activated lymphocytes. Impor-
tantly, the method used in our study to expand NK cells is
robust and has already been adapted to clinical-grade conditions
(25, 38).

Sorafenib has become part of the contemporary treatment
arsenal for advancedHCC (8, 9, 27). Sorafenib reportedly inhibits
cytotoxicity and IFNg production of both resting and activated
human NK cells (39). In mice, sorafenib reduced the number of
NK cells and their activity against tumor cells (40). However,
others have noted that short-term administration of sorafenib
activates hepatic NK cells through activation of tumor-associated
macrophages (41) and that sorafenib inhibits the shedding of
major histocompatibility complex class I–related chainA (MICA),
an NKG2D ligand (42). We found that expanded NK cells con-
siderably enhanced the antitumor cytotoxicity of sorafenib and
that NK-cell cytotoxicity appeared to be unaffected regardless of
whether sorafenib was added to the cultures, suggesting that a
combination of sorafenib plus expanded NK cells could have
additive antitumor effects in HCC.

Despite advances in therapy, the prognosis of patients with
advanced HCC remains dire. The results of this study suggest that
infusions of expandedNK cells with expression ofNKG2D-CD3z-
DAP10 receptors could be a useful addition to current treatment
options, such as sorafenib and experimental therapies based on
TCR-directed T cells. NK cells expanded with the method
described in this study are being infused systemically in clinical
trials for hematologic and nonhematologic malignancies (25,
38). In HCC, intra-arterial delivery of expanded NKG2D-CD3z-
DAP10þNK cellsmight also be explored (43). In addition to their

antitumor activity, NK cells might exert antiviral activity (4, 44,
45). Although the precise role of NK cells in this context requires
further clarification (4, 46), NK and NKT cells from liver allograft
perfusates, infused after liver transplantation, reduced HCV RNA
serum titers (47), suggesting that the application of expanded NK
cells in this context is worthy of further study.
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