Some Non-Classical Approaches to the Branderburger-Keisler Paradox [article]

Can Baskent
<span title="2011-07-25">2011</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
In this paper, we discuss a well-known self-referential paradox in foundational game theory, the Brandenburger - Keisler paradox. We approach the paradox from two different perspectives: non-well-founded set theory and paraconsistent logic. We show that the paradox persists in both frameworks for category theoretical reasons, but, with different properties.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1107.4929v1">arXiv:1107.4929v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/d52qphlc4nff5kmzyzunnz43um">fatcat:d52qphlc4nff5kmzyzunnz43um</a> </span>
<a target="_blank" rel="noopener" href="https://archive.org/download/arxiv-1107.4929/1107.4929.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> File Archive [PDF] </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1107.4929v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>