Determination and differentiation of sex in Pacific salmon

James Grant Robertson
1951
Chum salmon embryonal discs were smeared and the cells stained with acetocarmine (60° C.) for chromosome content. Thirty-eight chromosomes (granular, sigmoid, and j-shaped) were counted, but the number was not considered absolute. The presence of sex chromosomes could not be established. Chromosomes in cells of differentiating gonads showed such excessive clumping that a count could not be made. Sex differentiation was followed in chum salmon. Sections from alevins (three weeks old) showed the
more » ... ks old) showed the gonads to be indifferent. Isolated nests of germ cells appeared which eventually formed a continuous cord (five weeks). At nine weeks the primordial ovary developed oocytes and in the succeeding week formed an endovarial canal. At this time the testis was first recognized (ten weeks). It was a small compact organ containing spermatogonia. Up to the final examination (fifteen weeks) the ovary showed no new structures excepting a prominent vena commites anteriad, while the testis retained its primitive features. The sex of pink and chum salmon fry migrants were shown by dissection. Ultraviolet light and temperature treatment of developing chum, pink, and sockeye embryos did not show that these factors would influence the sex ratio. Temperature data were decidedly inconclusive. An equal distribution of the sexes in pink and chum fry and sockeye smolts was found in data compiled from migrant runs at Port John, B. C. It is suggested that precocious male sockeye mature in the sea. The sex ratios at stages in the life history of the pink salmon are presented to show that there had occurred a natural sea mortality of 40.2 percent.
doi:10.14288/1.0106906 fatcat:remht4gnzjgvbgvt52dt432oau