Hyperbolic Graph Neural Networks [article]

Qi Liu, Maximilian Nickel, Douwe Kiela
<span title="2019-10-28">2019</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
Learning from graph-structured data is an important task in machine learning and artificial intelligence, for which Graph Neural Networks (GNNs) have shown great promise. Motivated by recent advances in geometric representation learning, we propose a novel GNN architecture for learning representations on Riemannian manifolds with differentiable exponential and logarithmic maps. We develop a scalable algorithm for modeling the structural properties of graphs, comparing Euclidean and hyperbolic
more &raquo; ... ometry. In our experiments, we show that hyperbolic GNNs can lead to substantial improvements on various benchmark datasets.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1910.12892v1">arXiv:1910.12892v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/zpc5bwjlyrbbxlwvnflxr4jv4y">fatcat:zpc5bwjlyrbbxlwvnflxr4jv4y</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200908113136/https://arxiv.org/pdf/1910.12892v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/72/e6/72e66d1a6cde4a285c4fdad0b4e59072e0c78a97.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1910.12892v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>