Flexible and Reconfigurable Mismatch-Tolerant Serial Clock Distribution Networks

Atanu Chattopadhyay, Zeljko Zilic
2012 IEEE Transactions on Very Large Scale Integration (vlsi) Systems  
We present a clock distribution network that emphasizes flexibility and layout independence. It suits a variety of applications, clock domain shapes and sizes using a modular, standard cell-based design approach that mitigates the effect of intra-die temperature and process variances. We route the clock line serially, using an averaging technique to eliminate skew between clock regions in a domain. Routing clock lines serially allows optimal wire usage for clock networks by eliminating the
more » ... dant wires required to match path delays. Our clock network provides control over regional clock skews, can be used in beneficial skew applications and facilitates silicon-debug. Serial clocking permits the use of routing switches in the clock network and allows post-silicon resizing and reshaping of clock domains. Defective sections of the clock network can be bypassed, providing post silicon repair capability. The system uses a closed-loop synchronization phase to combine the clock skew reduction of an actively synchronized clock network with an open-loop operating phase that minimizes power consumption like passive clock networks. Our clock network provides significant flexibility for application-specific integrated circuit, system-on-chip, and field-programmable gate-array designs, exhibiting good operating characteristics everywhere in the design envelope. Our silicon implementation achieves a maximum edge-to-edge uncertainty of 80 ps for regional clocks, which is roughly equal to the cycle-to-cycle jitter of the on-chip clock source.
doi:10.1109/tvlsi.2011.2104982 fatcat:g2gfz5uwxje4xcokb6i7h4xxg4