A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Gait Phase Recognition Using Deep Convolutional Neural Network with Inertial Measurement Units
2020
Biosensors
Gait phase recognition is of great importance in the development of assistance-as-needed robotic devices, such as exoskeletons. In order for a powered exoskeleton with phase-based control to determine and provide proper assistance to the wearer during gait, the user's current gait phase must first be identified accurately. Gait phase recognition can potentially be achieved through input from wearable sensors. Deep convolutional neural networks (DCNN) is a machine learning approach that is
doi:10.3390/bios10090109
pmid:32867277
fatcat:mris2al26fgune3273ode4dudu