Estimation of a New Canopy Structure Parameter for Rice Using Smartphone Photography

Ziyang Yu, Susan L. Ustin, Zhongchen Zhang, Huanjun Liu, Xinle Zhang, Xiangtian Meng, Yang Cui, Haixiang Guan
2020 Sensors  
The objective of this study was to develop a low-cost method for rice growth information obtained quickly using digital images taken with smartphone. A new canopy parameter, namely, the canopy volume parameter (CVP), was proposed and developed for rice using the leaf area index (LAI) and plant height (PH). Among these parameters, the CVP was selected as an optimal parameter to characterize rice yields during the growth period. Rice canopy images were acquired with a smartphone. Image feature
more » ... e. Image feature parameters were extracted, including the canopy cover (CC) and numerous vegetation indices (VIs), before and after image segmentation. A rice CVP prediction model in which the CC and VIs served as independent variables was established using a random forest (RF) regression algorithm. The results revealed the following. The CVP was better than the LAI and PH for predicting the final yield. And a CVP prediction model constructed according to a local modelling method for distinguishing different types of rice varieties was the most accurate (coefficient of determination (R2) = 0.92; root mean square error (RMSE) = 0.44). These findings indicate that digital images can be used to track the growth of crops over time and provide technical support for estimating rice yields.
doi:10.3390/s20144011 pmid:32707649 fatcat:z2ethpesoneizi3t7mtconc67e