Optimizing colour for camouflage and visibility using deep learning: the effects of the environment and the observer's visual system

J. G. Fennell, L. Talas, R. J. Baddeley, I. C. Cuthill, N. E. Scott-Samuel
<span title="2019-05-31">2019</span> <i title="The Royal Society"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/kdv34qlmv5gsfphm6vnme655ia" style="color: black;">Journal of the Royal Society Interface</a> </i> &nbsp;
Avoiding detection can provide significant survival advantages for prey, predators, or the military; conversely, maximizing visibility would be useful for signalling. One simple determinant of detectability is an animal's colour relative to its environment. But identifying the optimal colour to minimize (or maximize) detectability in a given natural environment is complex, partly because of the nature of the perceptual space. Here for the first time, using image processing techniques to embed
more &raquo; ... rgets into realistic environments together with psychophysics to estimate detectability and deep neural networks to interpolate between sampled colours, we propose a method to identify the optimal colour that either minimizes or maximizes visibility. We apply our approach in two natural environments (temperate forest and semi-arid desert) and show how a comparatively small number of samples can be used to predict robustly the most and least effective colours for camouflage. To illustrate how our approach can be generalized to other non-human visual systems, we also identify the optimum colours for concealment and visibility when viewed by simulated red-green colour-blind dichromats, typical for non-human mammals. Contrasting the results from these visual systems sheds light on why some predators seem, at least to humans, to have colouring that would appear detrimental to ambush hunting. We found that for simulated dichromatic observers, colour strongly affected detection time for both environments. In contrast, trichromatic observers were more effective at breaking camouflage.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1098/rsif.2019.0183">doi:10.1098/rsif.2019.0183</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/31138092">pmid:31138092</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC6544896/">pmcid:PMC6544896</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/dcqeh5vymjdiri4usaefd7zjqe">fatcat:dcqeh5vymjdiri4usaefd7zjqe</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200510101123/https://research-information.bris.ac.uk/ws/files/196855041/rsif.2019.0183.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/f3/24/f324edbe1d180fec550be8640f142a484514d0db.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1098/rsif.2019.0183"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> Publisher / doi.org </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544896" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>