A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2018; you can also visit <a rel="external noopener" href="http://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005973&type=printable">the original URL</a>. The file type is <code>application/pdf</code>.
GSimp: A Gibbs sampler based left-censored missing value imputation approach for metabolomics studies
<span title="2018-01-31">2018</span>
<i title="Public Library of Science (PLoS)">
<a target="_blank" rel="noopener" href="https://fatcat.wiki/container/ch57atmlprauhhbqdf7x4ytejm" style="color: black;">PLoS Computational Biology</a>
</i>
Left-censored missing values commonly exist in targeted metabolomics datasets and can be considered as missing not at random (MNAR). Improper data processing procedures for missing values will cause adverse impacts on subsequent statistical analyses. However, few imputation methods have been developed and applied to the situation of MNAR in the field of metabolomics. Thus, a practical left-censored missing value imputation method is urgently needed. We developed an iterative Gibbs sampler based
<span class="external-identifiers">
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1371/journal.pcbi.1005973">doi:10.1371/journal.pcbi.1005973</a>
<a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/29385130">pmid:29385130</a>
<a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC5809088/">pmcid:PMC5809088</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/4pr66p7yafbobnm44rnko7cidm">fatcat:4pr66p7yafbobnm44rnko7cidm</a>
</span>
more »
... left-censored missing value imputation approach (GSimp). We compared GSimp with other three imputation methods on two real-world targeted metabolomics datasets and one simulation dataset using our imputation evaluation pipeline. The results show that GSimp outperforms other imputation methods in terms of imputation accuracy, observation distribution, univariate and multivariate analyses, and statistical sensitivity. Additionally, a parallel version of GSimp was developed for dealing with large scale metabolomics datasets. The R code for GSimp, evaluation pipeline, tutorial, real-world and simulated targeted metabolomics datasets are available at: (2018) GSimp: A Gibbs sampler based leftcensored missing value imputation approach for metabolomics studies. PLoS Comput Biol 14(1): e1005973. https://doi.org/10.
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20180723142439/http://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005973&type=printable" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/97/d9/97d92be369a978b7c26a63eadae9d90d7be180d3.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1371/journal.pcbi.1005973">
<button class="ui left aligned compact blue labeled icon button serp-button">
<i class="unlock alternate icon" style="background-color: #fb971f;"></i>
plos.org
</button>
</a>
<a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5809088" title="pubmed link">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
pubmed.gov
</button>
</a>