The effect of single pyramidal neuron firing across and within layers in mouse V1 [article]

Jochen F Meyer, Peyman Golshani, Stelios Smirnakis
2017 bioRxiv   pre-print
The influence of cortical cell spiking activity on nearby cells has been studied extensively in vitro. Less is known, however, about the impact of single cell firing on local cortical networks in vivo. In a pioneering study, Kwan et al. (Kwan et al., 2012) reported that in mouse layer 2/3 (L2/3), under anesthesia, stimulating a single pyramidal cell recruits ~1.7% of neighboring pyramidal units. Here we employ two-photon calcium imaging, in conjunction with single-cell patch clamp stimulation,
more » ... o probe, in both the awake and lightly anesthetized states, how i) activating single L2/3 pyramidal neurons recruits neighboring units within L2/3 and from layer 4 (L4) to L2/3, and whether ii) activating single pyramidal neurons changes population activity in local circuit. To do this, it was essential to develop an algorithm capable of quantifying how sensitive the calcium signal is at detecting effectively recruited units (followers). This algorithm allowed us to estimate the chance of detecting a follower as a function of the probability that an epoch of stimulation elicits one extra action potential (AP) in the follower cell. Using this approach, we found only a small fraction (<0.75%) of L2/3 cells to be significantly activated within a radius of ~200 microns from a stimulated neighboring L2/3 pyramidal cell. This fraction did not change significantly in the awake versus the lightly anesthetized state, nor when stimulating L2/3 versus underlying L4 pyramidal neurons. These numbers are in general agreement with, though lower than, the percentage of neighboring cells (2.1%) reported by Kwan et al. to be activated upon stimulating single L2/3 pyramidal neurons under anesthesia (Kwan et al., 2012). Interestingly, despite the small number of individual units found to be reliably driven, we did observe a modest but significant elevation in aggregate population responses compared to sham stimulation. This underscores the distributed impact that single cell stimulation has on neighboring microcircuit responses, revealing only a small minority of relatively strongly connected partners.
doi:10.1101/232603 fatcat:l5rvrpx4ybhh3jgmfx5rvugrwy