A new technique for characterization of epileptic spikes using wavelet transform and neural network

H. N. Suresh
2012 International Journal of Physical Sciences  
A technique proposed for the automatic detection of spikes in electroencephalograms (EEG). The important features of the raw EEG data were extracted using two methods: Wavelet transform and energy estimation. This data was normalized and given as input to the neural network, which was trained using back propagation algorithm. Energy estimation was used as an amplitude threshold parameter. The wavelet transform (WT) is a powerful tool for multi-resolution analysis of non-stationary signal as
more » ... onary signal as well as for signal compression, recognition and restoration, which uses Daubechies 4 as the mother wavelet. The details of the wavelet decomposition level, 1, 2, 3 and energy estimation parameters are given as input to the neural network in order to detect spikes. The codes are written in C and implemented on the DSP Processor TMS320VC5402. The waveforms were observed on MATLAB. The effectiveness of the proposed technique was confirmed with and EEG layouts.
doi:10.5897/ijps09.036 fatcat:tuc52oz43nduhhmf7qwoe5oyx4