BOUNDS ON PERMANENTS, AND THE NUMBER OF 1-FACTORS AND 1-FACTORIZATIONS OF BIPARTITE GRAPHS [chapter]

A. Schrijver, E. Keith Lloyd
Surveys in Combinatorics  
We give a survey of some recent developments on bounds for permanents (Falikman-Egorychev, Voorhoeve, Bang, Bregman) , and show some related results on counting 1-factors (perfect matchings), 1-factorizations (edge-colourings), and eulerian orientations of graphs. rr ((IJr.).<IJ'(r.! J J.(r.-1)! J J )) l. l. J J J oES J a. ( ·i=l, and that the equality is proved for all fixed a and j separately); JO J 7 and 8 are trivial.
doi:10.1017/cbo9781107325548.006 fatcat:2pnilpkfmrdwnny7zuxn4luyji