Aggregation in multiagent systems and the problem of truth-tracking

Gabriella Pigozzi, Stephan Hartmann
2007 Proceedings of the 6th international joint conference on Autonomous agents and multiagent systems - AAMAS '07  
One of the major problems that artificial intelligence needs to tackle is the combination of different and potentially conflicting sources of information. Examples are multi-sensor fusion, database integration and expert systems development. In this paper we are interested in the aggregation of propositional logic-based information, a problem recently addressed in the literature on information fusion. It has applications in multi-agent systems that aim at aggregating the distributed agent-based
more » ... ributed agent-based knowledge into an (ideally) unique set of propositions. We consider a group of autonomous agents who individually hold a logically consistent set of propositions. Each set of propositions represents an agent's beliefs on issues on which the group has to make a collective decision. To make the collective decision, several aggregation procedures have been proposed in the literature. Assuming that all propositions in question are factually right or wrong, we ask how good belief fusion is as a truth tracker. Will it single out the true set of propositions? And how does information fusion compare with other aggregation procedures? We address these questions in a probabilistic framework and show that information fusion does especially well for agents with a middling competence of hitting the truth of an individual proposition.
doi:10.1145/1329125.1329245 dblp:conf/atal/PigozziH07 fatcat:5egnfvc3j5bgdo7mlncudr6zmm