Detection of Crop Hail Damage with a Machine Learning Algorithm Using Time Series of Remote Sensing Data

Leandro Sosa, Ana Justel, Íñigo Molina
2021 Agronomy  
Hailstorms usually result in total crop loss. After a hailstorm, the affected field is inspected by an insurance claims adjuster to assess yield loss. Assessment accuracy depends largely on in situ detection of homogeneous damage sectors within the field, using visual techniques. This paper presents an algorithm for the automatic detection of homogeneous hail damage through the application of unsupervised machine learning techniques to vegetation indices calculated from remote sensing data.
more » ... microwave and five spectral indices were evaluated before and after a hailstorm in zones with different degrees of damage. Dual Polarization SAR Vegetation Index and Normalized Pigment Chlorophyll Ratio Index were the most sensitive to hail-induced changes. The time series and rates of change of these indices were used as input variables in the K-means method for clustering pixels into homogeneous damage zones. Validation of the algorithm with data from 91 soybean, wheat, and corn plots showed that in 87.01% of cases there was significant evidence of differences in average damage between zones determined by the algorithm within the plot. Thus, the algorithm presented in this paper allowed efficient detection of homogeneous hail damage zones, which is expected to improve accuracy and transparency in the characterization of hailstorm events.
doi:10.3390/agronomy11102078 fatcat:j5wge5xsirdtdcmcg4olkywmdq