A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2014; you can also visit the original URL.
The file type is application/pdf
.
Ricci Curvature on Polyhedral Surfaces via Optimal Transportation
2014
Axioms
The problem of defining correctly geometric objects such as the curvature is a hard one in discrete geometry. In 2009, Ollivier defined a notion of curvature applicable to a wide category of measured metric spaces, in particular to graphs. He named it coarse Ricci curvature because it coincides, up to some given factor, with the classical Ricci curvature, when the space is a smooth manifold. Lin, Lu & Yau, Jost & Liu have used and extended this notion for graphs giving estimates for the
doi:10.3390/axioms3010119
fatcat:fsls7yd4gvemxaf2vdytcbmf5e