A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
Copper Strip Surface Defect Detection Model Based on Deep Convolutional Neural Network
2021
Applied Sciences
Surface defect automatic detection has great significance for copper strip production. The traditional machine vision for surface defect automatic detection of copper strip needs artificial feature design, which has a long cycle, and poor ability of versatility and robustness. However, deep learning can effectively solve these problems. Therefore, based on the deep convolution neural network and the transfer learning strategy, an intelligent recognition model of surface defects of copper strip
doi:10.3390/app11198945
fatcat:gltw6otkevc7jdphuptb6cpkni