Relating Z and first-order logic [chapter]

Andrew Martin
<span title="">1999</span> <i title="Springer Berlin Heidelberg"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/2w3awgokqne6te4nvlofavy5a4" style="color: black;">Lecture Notes in Computer Science</a> </i> &nbsp;
Despite being widely regarded as a gloss on first-order logic and set theory, Z has not been found to be very supportive of proof. This paper attempts to distinguish between the different philosophies of proof in Z. It discusses some of the issues which must be addressed in creating a proof technology for Z, namely schemas, undefinedness, and what kind of logic to use. Paper written at the University of Southampton.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/3-540-48118-4_17">doi:10.1007/3-540-48118-4_17</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/bvidc45le5hubehrv3ltxwxgva">fatcat:bvidc45le5hubehrv3ltxwxgva</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170911073105/https://link.springer.com/content/pdf/10.1007%2F3-540-48118-4_17.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/b7/7b/b77b4658808daac0ffc233ff4c2f74c5c49756cf.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/3-540-48118-4_17"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> springer.com </button> </a>