Embedded Virtual Machines for Robust Wireless Control Systems

Rahul Mangharam, Miroslav Pajic
2009 2009 29th IEEE International Conference on Distributed Computing Systems Workshops  
Embedded wireless networks have largely focused on openloop sensing and monitoring. To address actuation in closedloop wireless control systems there is a strong need to re-think the communication architectures and protocols for reliability, coordination and control. As the links, nodes and topology of wireless systems are inherently unreliable, such time-critical and safety-critical applications require programming abstractions where the tasks are assigned to the sensors, actuators and
more » ... ers as a single component rather than statically mapping a set of tasks to a specific physical node at design time. To this end, we introduce the Embedded Virtual Machine (EVM), a powerful and flexible programming abstraction where virtual components and their properties are maintained across node boundaries. In the context of process and discrete control, an EVM is the distributed runtime system that dynamically selects primary-backup sets of controllers to guarantee QoS given spatial and temporal constraints of the underlying wireless network. The EVM architecture defines explicit mechanisms for control, data and fault communication within the virtual component. EVM-based algorithms introduce new capabilities such as predictable outcomes and provably minimal graceful degradation during sensor/actuator failure, adaptation to mode changes and runtime optimization of resource consumption. Through the design of a natural gas process plant hardware-in-loop simulation we aim to demonstrate the preliminary capabilities of EVM-based wireless networks.
doi:10.1109/icdcsw.2009.31 dblp:conf/icdcsw/MangharamP09 fatcat:p32n5lba45hkjfkqbong5lje64