Morphological, Structural, and Optical Bandgap Characterization of Extracted ZnO Nanoparticles from Commercial Paste

Mahmoud Nabil, I. V. Perez-Quintana, M. Acosta, J. A. Mendez-Gamboa, R. Castro-Rodriguez, Hom Kandel
2021 Advances in Materials Science and Engineering  
ZnO nanoparticles (NPs) were extracted from a commercial paste in both colloidal and precipitate forms. The Zetasizer analysis performed on the colloid showed ZnO NPs ranging from ∼30 nm to ∼100 nm. Thin films of ZnO were deposited on glass substrates by spin-coating technique from a mixture of the extracted colloid and precipitate. The scanning electron microscope (SEM) images showed uniformly arranged, mesoporous, and nanostructured ZnO particles of different shapes, with an estimated film
more » ... ckness of 0.67 μm. Analysis by energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD) confirmed the presence of ZnO in the films, with no impurities or remnants of other materials. The XRD analysis showed a polycrystalline nature of the films and identified a pure phase formation of the hexagonal wurtzite structure. The average crystallite size calculated from the diffraction peaks is ∼43.25 nm. The calculated crystal tensile strain is 1.954 × 10−3, which increases the crystal volume by 0.728% compared with the crystal volume of standard ZnO. The calculated crystal parameters are a = b = 3.258 Å and c = 5.217 Å. The calculated dislocation density (d) and bond length Zn–O (L) are 5.35 × 10−4 nm−2 and 2.695 Å, respectively. Ultraviolet-visible absorption spectra showed an optical band gap of ∼3.80 eV.
doi:10.1155/2021/9926544 fatcat:osxd6s3jbfc2zpesc5x7orrlri