Remote Preparation of Quantum States

C.H. Bennett, P. Hayden, D.W. Leung, P.W. Shor, A. Winter
2005 IEEE Transactions on Information Theory  
Remote state preparation is the variant of quantum state teleportation in which the sender knows the quantum state to be communicated. The original paper introducing teleportation established minimal requirements for classical communication and entanglement but the corresponding limits for remote state preparation have remained unknown until now: previous work has shown, however, that it not only requires less classical communication but also gives rise to a trade-off between these two
more » ... in the appropriate setting. We discuss this problem from first principles, including the various choices one may follow in the definitions of the actual resources. Our main result is a general method of remote state preparation for arbitrary states of many qubits, at a cost of 1 bit of classical communication and 1 bit of entanglement per qubit sent. In this "universal" formulation, these ebit and cbit requirements are shown to be simultaneously optimal by exhibiting a dichotomy. Our protocol then yields the exact trade-off curve for arbitrary ensembles of pure states and pure entangled states (including the case of incomplete knowledge of the ensemble probabilities), based on the recently established quantum-classical trade-off for quantum data compression. The paper includes an extensive discussion of our results, including the impact of the choice of model on the resources, the topic of obliviousness, and an application to private quantum channels and quantum data hiding.
doi:10.1109/tit.2004.839476 fatcat:nishrbydifdb7pztykahq4ooka