Massive star evolution in close binaries

H. F. Song, G. Meynet, A. Maeder, S. Ekström, P. Eggenberger
2016 Astronomy and Astrophysics  
We investigate the impact of tidal interactions, before any mass transfer, on various properties of the stellar models. We study the conditions for obtaining homogeneous evolution triggered by tidal interactions, and for avoiding any Roche lobe overflow during the Main-Sequence phase. We consider the case of rotating stars computed with a strong coupling mediated by an interior magnetic field. In models without any tidal interaction (single stars and wide binaries), homogeneous evolution in
more » ... d body rotating models is obtained when two conditions are realized: the initial rotation must be high enough, the loss of angular momentum by stellar winds should be modest. This last point favors metal-poor fast rotating stars. In models with tidal interactions, homogeneous evolution is obtained when rotation imposed by synchronization is high enough (typically a time-averaged surface velocities during the Main-Sequence phase above 250 km s^-1), whatever the mass losses. In close binaries, mixing is stronger at higher than at lower metallicities. Homogeneous evolution is thus favored at higher metallicities. Roche lobe overflow avoidance is favored at lower metallicities due to the fact that stars with less metals remain more compact. We study also the impact of different processes for the angular momentum transport on the surface abundances and velocities in single and close binaries. In models where strong internal coupling is assumed, strong surface enrichments are always associated to high surface velocities in binary or single star models. In contrast, models computed with mild coupling may produce strong surface enrichments associated to low surface velocities. Close binary models may be of interest for explaining homogeneous massive stars, fast rotating Wolf-Rayet stars, and progenitors of long soft gamma ray bursts, even at high metallicities.
doi:10.1051/0004-6361/201526074 fatcat:zwue6dxibvcahf5v5cntu4v3sq