Long Alternating Paths Exist

Wolfgang Mulzer, Pavel Valtr, Danny Z. Chen, Sergio Cabello
2020 International Symposium on Computational Geometry  
Let P be a set of 2n points in convex position, such that n points are colored red and n points are colored blue. A non-crossing alternating path on P of length 𝓁 is a sequence p₁, ... , p_𝓁 of 𝓁 points from P so that (i) all points are pairwise distinct; (ii) any two consecutive points p_i, p_{i+1} have different colors; and (iii) any two segments p_i p_{i+1} and p_j p_{j+1} have disjoint relative interiors, for i ≠ j. We show that there is an absolute constant ε > 0, independent of n and of
more » ... e coloring, such that P always admits a non-crossing alternating path of length at least (1 + ε)n. The result is obtained through a slightly stronger statement: there always exists a non-crossing bichromatic separated matching on at least (1 + ε)n points of P. This is a properly colored matching whose segments are pairwise disjoint and intersected by common line. For both versions, this is the first improvement of the easily obtained lower bound of n by an additive term linear in n. The best known published upper bounds are asymptotically of order 4n/3+o(n).
doi:10.4230/lipics.socg.2020.57 dblp:conf/compgeom/MulzerV20 fatcat:5pdx7ifwmvchrczfcvsa6vk2pm