Arrays of Plasmonic Nanostructures for Absorption Enhancement in Perovskite Thin Films

Tianyi Shen, Qiwen Tan, Zhenghong Dai, Nitin P. Padture, Domenico Pacifici
2020 Nanomaterials  
We report optical characterization and theoretical simulation of plasmon enhanced methylammonium lead iodide (MAPbI 3 ) thin-film perovskite solar cells. Specifically, various nanohole (NH) and nanodisk (ND) arrays are fabricated on gold/MAPbI 3 interfaces. Significant absorption enhancement is observed experimentally in 75 nm and 110 nm-thick perovskite films. As a result of increased light scattering by plasmonic concentrators, the original Fabry–Pérot thin-film cavity effects are suppressed
more » ... n specific structures. However, thanks to field enhancement caused by plasmonic resonances and in-plane interference of propagating surface plasmon polaritons, the calculated overall power conversion efficiency (PCE) of the solar cell is expected to increase by up to 45.5%, compared to its flat counterpart. The role of different geometry parameters of the nanostructure arrays is further investigated using three dimensional (3D) finite-difference time-domain (FDTD) simulations, which makes it possible to identify the physical origin of the absorption enhancement as a function of wavelength and design parameters. These findings demonstrate the potential of plasmonic nanostructures in further enhancing the performance of photovoltaic devices based on thin-film perovskites.
doi:10.3390/nano10071342 pmid:32660111 fatcat:tc47gjpowfbcjar43obkgn7vxm