A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2019; you can also visit <a rel="external noopener" href="https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/s12864-017-3661-2">the original URL</a>. The file type is <code>application/pdf</code>.
Detect tissue heterogeneity in gene expression data with BioQC
<span title="2017-04-04">2017</span>
<i title="Springer Nature">
<a target="_blank" rel="noopener" href="https://fatcat.wiki/container/4srzxifvfrdlhjhg3dimznkp7m" style="color: black;">BMC Genomics</a>
</i>
Gene expression data can be compromised by cells originating from other tissues than the target tissue of profiling. Failures in detecting such tissue heterogeneity have profound implications on data interpretation and reproducibility. A computational tool explicitly addressing the issue is warranted. Results: We introduce BioQC, a R/Bioconductor software package to detect tissue heterogeneity in gene expression data. To this end BioQC implements a computationally efficient
<span class="external-identifiers">
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1186/s12864-017-3661-2">doi:10.1186/s12864-017-3661-2</a>
<a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/28376718">pmid:28376718</a>
<a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC5379536/">pmcid:PMC5379536</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/vtzv6uqgszclbasmxjqqfpxkvu">fatcat:vtzv6uqgszclbasmxjqqfpxkvu</a>
</span>
more »
... test and provides more than 150 signatures of tissue-enriched genes derived from large-scale transcriptomics studies. Simulation experiments show that BioQC is both fast and sensitive in detecting tissue heterogeneity. In a case study with whole-organ profiling data, BioQC predicted contamination events that are confirmed by quantitative RT-PCR. Applied to transcriptomics data of the Genotype-Tissue Expression (GTEx) project, BioQC reveals clustering of samples and suggests that some samples likely suffer from tissue heterogeneity. Conclusions: Our experience with gene expression data indicates a prevalence of tissue heterogeneity that often goes unnoticed. BioQC addresses the issue by integrating prior knowledge with a scalable algorithm. We propose BioQC as a first-line tool to ensure quality and reproducibility of gene expression data.
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190427151018/https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/s12864-017-3661-2" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/51/bd/51bdd24027ea7cda130f8161188f2419f633f1cf.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1186/s12864-017-3661-2">
<button class="ui left aligned compact blue labeled icon button serp-button">
<i class="unlock alternate icon" style="background-color: #fb971f;"></i>
springer.com
</button>
</a>
<a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5379536" title="pubmed link">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
pubmed.gov
</button>
</a>