A Comprehensive Approach for Floodplain Mapping through Identification of Hazard Using Publicly Available Data Sets over Canada

Mohit Prakash Mohanty, Slobodan P. Simonovic
2022 Water  
Quantifying flood inundation and hazards over large regions is paramount for gaining critical information on flood risk over the vulnerable population and environment. Readily available global data and enhancement in computational simulations have made it easier to simulate flooding at a large scale. This study explores the usability of publicly available datasets in flood inundation and hazard mapping, and ensures the flood-related information reaches the end-users efficiently. Runoff from the
more » ... North American Regional Reanalysis and other relevant inputs are fed to the CaMa-Flood model to generate flooding patterns for 1 in 100 and 1 in 200-year return period events over Canada. The simulated floodplain maps are overlaid on the property footprints of 34 cities (falling within the top 100 populated cities of Canada) to determine the degree of exposure during 1991, 2001 and 2011. Lastly, Flood Map Viewer—a web-based public tool, is developed to disseminate extensive flood-related information. The development of the tool is motivated by the commitment of the Canadian government to contribute $63 M over the next three years for the development of flood maps, especially in high-flood risk areas. The results from the study indicate that around 80 percent of inundated spots belong to high and very-high hazard classes in a 200-year event, which is roughly 4 percent more than observed during the 100-year event. We notice an increase in the properties exposed to flooding during the last three decades, with a signature rise in Toronto, Montreal and Edmonton. The flood-related information derived from the study can be used along with vulnerability and exposure components to quantify flood risk. This will help develop appropriate pathways for resilience building for long-term sustainable benefits.
doi:10.3390/w14142280 fatcat:whk5rumopvc5perijhk2ck3mja