Diagnosis of Cognitive Impairment using Multiple Data Modalities [thesis]

Upul Senanayake
Decline in cognitive functions including memory, processing speed and executive processes, has been associated with ageing for sometime. It is understood that every human will go through this process, but some will go through it faster, and for some this process starts earlier. Differentiating between cognitive decline due to a pathological process and normal ageing is an ongoing research challenge. According to the definition of the World Health Organization (WHO), dementia is an umbrella term
more » ... for a number of diseases affecting memory and other cognitive abilities and behaviour that interfere significantly with the ability to maintain daily living activities. Although a cure for dementia has not been found yet, it is often stressed that early identification of individuals at risk of dementia can be instrumental in treatment and management. Mild Cognitive Impairment (MCI) is considered to be a prodromal condition to dementia, and patients with MCI have a higher probability of progressing to certain types of dementia, the most common being Alzheimer's Disease (AD). Epidemiological studies suggest that the progression rate from MCI to dementia is around 10-12\% annually, while much lower in the general elderly population. Therefore, accurate and early diagnosis of MCI may be useful, as those patients can be closely monitored for progression to dementia. Traditionally, clinicians use a number of neuropsychological tests (also called NM features) to evaluate and diagnose cognitive decline in individuals. In contrast, computer aided diagnostic techniques often focus on medical imaging modalities such as magnetic resonance imaging (MRI) and positron emission tomography (PET). This thesis utilises machine learning and deep learning techniques to leverage both of these data modalities in a single end-to-end pipeline that is robust to missing information. A number of techniques have been designed, implemented and validated to diagnose different types of cognitive impairment including mild cognitive impairment and its subt [...]
doi:10.26190/unsworks/2051 fatcat:csfv7zn2nbahvdieghfsr5hhcm