INS/GNSS Integration for Aerobatic Flight Applications and Aircraft Motion Surveying

Edgar v. Hinüber, Christian Reimer, Tim Schneider, Michael Stock
2017 Sensors  
This paper presents field tests of challenging flight applications obtained with a new family of lightweight low-power INS/GNSS (inertial navigation system/global satellite navigation system) solutions based on MEMS (micro-electro-mechanical-sensor) machined sensors, being used for UAV (unmanned aerial vehicle) navigation and control as well as for aircraft motion dynamics analysis and trajectory surveying. One key is a 42+ state extended Kalman-filter-based powerful data fusion, which also
more » ... ws the estimation and correction of parameters that are typically affected by sensor aging, especially when applying MEMS-based inertial sensors, and which is not yet deeply considered in the literature. The paper presents the general system architecture, which allows iMAR Navigation the integration of all classes of inertial sensors and GNSS (global navigation satellite system) receivers from very-low-cost MEMS and high performance MEMS over FOG (fiber optical gyro) and RLG (ring laser gyro) up to HRG (hemispherical resonator gyro) technology, and presents detailed flight test results obtained under extreme flight conditions. As a real-world example, the aerobatic maneuvers of the World Champion 2016 (Red Bull Air Race) are presented. Short consideration is also given to surveying applications, where the ultimate performance of the same data fusion, but applied on gravimetric surveying, is discussed. Sensors 2017, 17, 941 2 of 16 measurement system, e.g., in his own challenging scientific applications, to be able to understand the requirements of sensor performance, signal processing and sensor data fusion better. Sensors 2017, 17, 941 2 of 16 competing system fails dramatically in this environment. The motivation of this article is not to describe the technical insights of the data fusion, but to support the reader, who might intend to use an inertial measurement system, e.g., in his own challenging scientific applications, to be able to understand the requirements of sensor performance, signal processing and sensor data fusion better.
doi:10.3390/s17050941 pmid:28445417 pmcid:PMC5461065 fatcat:wjiyoipxmbb57mbl7mffl4454y